计算图的n-hop邻居个数,并绘制频率分布直方图
在图论中,n-hop邻居(或称为K-hop邻居)是指从某个顶点出发,通过最短路径(即最少的边数)可以到达的所有顶点的集合,其中n(或K)是这个最短路径的长度。换句话说,n-hop邻居就是在图中,从一个顶点出发,经过n步可以到达的所有顶点。
举个日常生活中的例子,我们的朋友是我们的1-hop邻居,我们的朋友的朋友是我们的2-hop邻居,以此类推。如果我们想找到所有与我们最多只有三层朋友关系的人(包括我们的朋友、我们的朋友的朋友、以及我们的朋友的朋友的朋友),那么这些人就是我们的3-hop邻居。
在下图中对于中间的红色节点,玫红色的就是1-hop邻居,橙色2,粉色3。
如何在networkx中计算n-hop邻居的数量?
由定义我们可以知道,只要找到某个节点通过最短路径为n的边就可以找到它的n-hop邻居了,那么我们就可以用nx.single_source_shortest_path_length
。
代码如下:
import networkx as nx
def n_hop_neighbors(G, n_hop):
"""
Calculate n-hop neighbors for each node in the graph.
"""
n_hop_counts = {