Tensorflow学习(8)-通过MNIST数字识别问题学习(2)-变量管理

Tensorflow学习(7)-通过MNIST数字识别问题学习(1)中,将计算神经网络前向传播结果的过程抽象成了一个函数。

def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):

在定义中可看到,这个函数的参数包括了神经网络中的所有参数。然而,当网络结构更复杂、参数更多时。就需要一个更好的方式来传递和管理神经网络中的参数了。

TensorFlow提供了通过变量名称来创建或者获取一个变量的机制,通过这个机制,可以在不同的函数中直接通过变量的名字来使用变量,而不需要将变量通过参数的形式来传递。

主要是通过tf.get_variable和tf.variable_scope来实现的。下面介绍如何使用这两个函数。

之前我们通过tf.Variable函数来创建一个变量。除了tf.Variable函数,TensorFlow还提供了tf.get_variable来创建或者获取变量,当tf.get_variable用来创建变量时,和tf.Variable是基本等价的

# 下面两个定义是等价的
v = tf.get_variable("v", shape=[1], initializer=tf.constant_initializer(1.0))
v = tf.Variable(tf.constant(1.0, shape=[1]), name="v")

它们两个最大的区别就是tf.Variable函数中,变量名称(name)是一个可选的参数,但是tf.get_variable函数,变量命名成是一个必填的参数。tf.get_variable会根据这个名字创建或者获取变量。

获取

如果需要通过tf.get_variable获取一个已经创建的变量,需要通过tf.variable_scope函数来生成一个上下文管理器,并明确指明在这个上下文管理器中,tf.get_variable将直接获取以生成的变量

import tensorflow as tf

# 在名字为one的命名空间创建名字为v的变量
with tf.variable_scope("one"):
    v = tf.get_variable("v", [1], initializer=tf.constant_initializer(1.0))

# 如果在命名空间中已经存在名字为v的变量,代码就会报错
  with tf.variable_scope("one"):
      v = tf.get_variable("v", [1], initializer=tf.constant_initializer(1.0))

# 在生成上下文管理器时,将参数reuse设为True。这样tf.get_variable函数将直接获取已经声明的变量
with tf.variable_scope("one",reuse=True):
    v1 = tf.get_variable("v")
    print(v==v1)
print(v==v1)

实现方式

tf.variable_scope函数生成的上下文管理器也会创建一个TensorFlow中的命名空间,在命名空间内创建的变量名称都会带上命名空间名作为前缀。

import tensorflow as tf

v1 = tf.get_variable("v", [1])
print(v1.name)  # v:0
with tf.variable_scope("one"):
    v2 = tf.get_variable("v", [1])
    print(v2.name)  # one/v:0
    with tf.variable_scope("two"):
        v3 = tf.get_variable("v", [1])
        print(v3.name)  # one/two/v:0

with tf.variable_scope("", reuse=True):
    v4 = tf.get_variable("one/v", [1])
    print(v4.name)  # one/v:0
    print(v4 == v2)  # True

with tf.variable_scope("one", reuse=True):
    v5 = tf.get_variable("two/v", [1])
    print(v5.name)  # one/two/v:0
    print(v5 == v3)  # True

通过所学对def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):进行改进

不必以参数的形式传入每层的变量

def inference(input_tensor, avg_class=None, reuse=False):
    if(avg_class==None):
        with tf.variable_scope('layer1', reuse=reuse):
            weights = tf.get_variable("weights", [INPUT_NODE, LAYER1_NODE],
                                                        initializer=tf.truncated_normal_initializer(stddev=0.1))
            biases = tf.get_variable("biases", [1, LAYER1_NODE], initializer=tf.constant_initializer(0.0))
            layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
        with tf.variable_scope('layer2', reuse=reuse):
            weights = tf.get_variable("weights", [LAYER1_NODE, OUTPUT_NODE],
                                                        initializer=tf.truncated_normal_initializer(stddev=0.1))
            biases = tf.get_variable("biases", [1, OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
            layer2 = tf.matmul(layer1, weights) + biases
        return layer2
    else:
        with tf.variable_scope('layer1', reuse=reuse):
            weights = avg_class.average(tf.get_variable("weights", [INPUT_NODE, LAYER1_NODE],
                                                        initializer=tf.truncated_normal_initializer(stddev=0.1)))
            biases = avg_class.average(
                tf.get_variable("biases", [1, LAYER1_NODE], initializer=tf.constant_initializer(0.0)))
            layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
        with tf.variable_scope('layer2', reuse=reuse):
            weights = avg_class.average(tf.get_variable("weights", [LAYER1_NODE, OUTPUT_NODE],
                                                        initializer=tf.truncated_normal_initializer(stddev=0.1)))
            biases = avg_class.average(
                tf.get_variable("biases", [1, OUTPUT_NODE], initializer=tf.constant_initializer(0.0)))
            layer2 = tf.matmul(layer1, weights) + biases
        return layer2

使用所学对Tensorflow学习(7)-通过MNIST数字识别问题学习(1)的代码进行了重写

其中inference_()和train_()是以前的版本。

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# MNIST数据集相关的参数
INPUT_NODE = 784  # 输出层的节点数。也就是图片的像素
OUTPUT_NODE = 10  # 输出节点数,相当于类别

# 配置神经网络的参数
LAYER1_NODE = 500  # 隐藏层节点数。这里使用一个500个节点的隐藏层

LEARNING_RATE_BASE = 0.8  # 基础的学习率
LEARNING_RATE_DECAY = 0.99  # 学习率的衰减率
REGULARIZATION_RATE = 0.0001  # 描述模型复杂度的正则化项在损失函数中的占比系数

MOVING_AVERAGE_DECAY = 0.999  # 滑动平均衰减率

BATCH_SIZE = 100  # 数字越小越接近随机梯度下降,越大越接近梯度下降
TRAINING_STEPS = 30000  # 训练轮数

def new(reuse=False):
    with tf.variable_scope('layer1', reuse=reuse):
        tf.get_variable("weights", [INPUT_NODE, LAYER1_NODE],
                                                    initializer=tf.truncated_normal_initializer(stddev=0.1))
        tf.get_variable("biases", [1, LAYER1_NODE], initializer=tf.constant_initializer(0.0))

    with tf.variable_scope('layer2', reuse=reuse):
        tf.get_variable("weights", [LAYER1_NODE, OUTPUT_NODE],
                                                    initializer=tf.truncated_normal_initializer(stddev=0.1))
        tf.get_variable("biases", [1, OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
def inference(input_tensor, avg_class=None, reuse=False):
    if(avg_class==None):
        with tf.variable_scope('layer1', reuse=reuse):
            weights = tf.get_variable("weights", [INPUT_NODE, LAYER1_NODE],
                                                        initializer=tf.truncated_normal_initializer(stddev=0.1))
            biases = tf.get_variable("biases", [1, LAYER1_NODE], initializer=tf.constant_initializer(0.0))
            layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
        with tf.variable_scope('layer2', reuse=reuse):
            weights = tf.get_variable("weights", [LAYER1_NODE, OUTPUT_NODE],
                                                        initializer=tf.truncated_normal_initializer(stddev=0.1))
            biases = tf.get_variable("biases", [1, OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
            layer2 = tf.matmul(layer1, weights) + biases
        return layer2
    else:
        with tf.variable_scope('layer1', reuse=reuse):
            weights = avg_class.average(tf.get_variable("weights", [INPUT_NODE, LAYER1_NODE],
                                                        initializer=tf.truncated_normal_initializer(stddev=0.1)))
            biases = avg_class.average(
                tf.get_variable("biases", [1, LAYER1_NODE], initializer=tf.constant_initializer(0.0)))
            layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
        with tf.variable_scope('layer2', reuse=reuse):
            weights = avg_class.average(tf.get_variable("weights", [LAYER1_NODE, OUTPUT_NODE],
                                                        initializer=tf.truncated_normal_initializer(stddev=0.1)))
            biases = avg_class.average(
                tf.get_variable("biases", [1, OUTPUT_NODE], initializer=tf.constant_initializer(0.0)))
            layer2 = tf.matmul(layer1, weights) + biases
        return layer2


def train(mnist):
    x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
    new()
    y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
    y = inference(x,None,True)
    # 定义存储训练轮数的变量。这个变量不需要计算滑动平均值,
    # 所以这里指定这个变量为不可训练的变量(trainable = Fasle)。
    global_step = tf.Variable(0, trainable=False)

    # 给定滑动平均衰减率和训练轮数的变量
    # 这里给定训练轮数的变量就是我们在<Tensorflow学习(6)-神经网络进一步优化(滑动平均模型)>中提到的:
    # ExponentialMovingAverage还提供了num_updates参数来动态设置decay大小,避免模型前期训练的太慢
    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, num_updates=global_step)

    # 在所有代表神经网络参数的变量上使用滑动平均。tf.trainable_variables返回的就是
    # 图上集合GraphKeys.TRAINABLE_VARIABLESZ中的元素。这个集合的元素就是所有没有指定trainable=False的参数。
    variable_averages_op = variable_averages.apply(tf.trainable_variables())
    print(tf.trainable_variables())
    a_y = inference(x, variable_averages, True)
    # 分类问题,计算交叉熵作为刻画预测和真是指之间差距的损失函数。这里使用TensorFlow中提供的
    # sparse_softmax_cross_entropy_with_logits函数来计算交叉熵。当分类只有一个正确答案时
    # 可以使用这个函数来计算交叉熵损失。
    # 这个函数的第一个参数是神经网络不包括softmax层的前向传播结果,第二个是训练数据的正确答案。
    # 因为标准答案是一个长度为10的一位数组,而该函数需要的是提供一个正确答案的数字,所以要使用tf.argmax
    # 函数来得到正确答案对应的编号
    # (2)tf.argmax()会在下面给出解释,编号为2
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    # 计算在当前batch中所有样例的交叉熵平均值
    # (3)tf.redunce_mean
    cross_entropy_mean = tf.reduce_mean(cross_entropy)

    # 计算L2正则化损失函数。
    regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
    # 计算模型的正则化损失。一般只计算权重的正则化损失,不计算偏置项
    with tf.variable_scope("layer1", reuse=True):
        weights1 = tf.get_variable("weights")
    with tf.variable_scope("layer2", reuse=True):
        weights2 = tf.get_variable("weights")
    regularization = regularizer(weights1) + regularizer(weights2)
    loss = cross_entropy_mean + regularization

    # 设置指数衰减的学习率。
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,  # 当前的轮数
        mnist.train.num_examples / BATCH_SIZE,  # 过完所有训练集需要的轮数
        # 如在加上参数staircase=True,上面两个数就保证了
        # 学习率没经过一次所有的训练数据就就乘以一次衰减率
        LEARNING_RATE_DECAY)

    # 使用tf.train.GradientDescentOptimizer优化算法来优化损失函数
    train_step = tf.train.GradientDescentOptimizer(learning_rate). \
        minimize(loss, global_step=global_step)

    # 在训练神经网络模型时,每过一遍数据需要通过反向传播来更新网络中的参数
    # 又要更新每一个参数的滑动平均值。为了一次完成多个操作,TensorFlow提供了
    # tf.group和tf.control_dependencies两种机制。
    # 这样写与下面一行代码是等价的
    # with tf.control_dependencies([train_step,variable_averages_op]):
    #     train_op = tf.no_op(name='train')
    # (感觉tf.group这种挺好记的,记录上面这种就为了以后看代码的时候防止看不懂吧)
    train_op = tf.group(train_step, variable_averages_op)

    # 检验正确率。现在这些代码看的明白,就不解释了。但是可能下次看就不明白了。。
    # 不明白就看书吧,书上有
    correct_prediction_ = tf.equal(tf.argmax(a_y, 1), tf.argmax(y_, 1))
    accuracy_ = tf.reduce_mean(tf.cast(correct_prediction_, tf.float32))

    # 终于可以开始训练了
    # 由于数据集比较小,所以没有划分为更小的batch。
    # 关于如何使用batch可以参考之前的博客
    with tf.Session() as sess:
        # ??? 咋直接run()了
        tf.global_variables_initializer().run()
        # 准备验证数据。这个一般都是用来大致判断停止的条件。
        validata_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
        # 准备测试数据
        test_feed = {x: mnist.test.images, y_: mnist.test.labels}

        # 迭代的训练神经网络
        for i in range(TRAINING_STEPS):
            # 每1000轮输出一次在验证集上的测试效果
            if i % 100 == 0:
                validata_acc_ = sess.run(accuracy_, feed_dict=validata_feed)
                print("%d training steps , validata_acc ,using average model is %g" % (i, validata_acc_))
            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            sess.run(train_op, feed_dict={x: xs, y_: ys})
        # 训练结束后,测试最终正确率
        test_acc_ = sess.run(accuracy_, feed_dict=test_feed)
        print("last acc not use %d", test_acc_)


# 定义一个辅助函数,给定神经网络的输入和所有参数,计算神经网络的前向传播结果。
# 这个函数也支持传入用于计算滑动平均值的类,方便在测试时使用滑动平均值
def inference_(input_tensor, avg_class, weights1, biases1, weights2, biases2):  # inference有推断,推理的意思
    # 当没有提供滑动平均类时,直接使用参数当前的取值
    if avg_class is None:
        # 计算隐藏层的前向传播结果,使用ReLU激活函数
        layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)

        # 因为在计算损失函数时会一并计算softmax函数,所以这里不需要加入激活函数
        return tf.matmul(layer1, weights2) + biases2
    # 当提供滑动平均类时
    else:
        # 使用avg_class.average来取变量的滑动平均值,用它来计算相应神经网络前向传播的结果
        layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))

        return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2)


# 训练模型的过程
def train_(mnist):
    x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
    # 生成隐藏层的参数
    # (1)tf.truncated_normal() 会在博客下方列出解释
    weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
    biases1 = tf.Variable(tf.constant(0.1, shape=[1, LAYER1_NODE]))
    # 生成输出层的参数
    weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
    biases2 = tf.Variable(tf.constant(0.1, shape=[1, OUTPUT_NODE]))

    # 使用自定义的函数inference()计算当前参数下神经网络前向传播的结果
    # 这里不计算滑动平均值
    y = inference(x, None, weights1, biases1, weights2, biases2)

    # 定义存储训练轮数的变量。这个变量不需要计算滑动平均值,
    # 所以这里指定这个变量为不可训练的变量(trainable = Fasle)。
    global_step = tf.Variable(0, trainable=False)

    # 给定滑动平均衰减率和训练轮数的变量
    # 这里给定训练轮数的变量就是我们在<Tensorflow学习(6)-神经网络进一步优化(滑动平均模型)>中提到的:
    # ExponentialMovingAverage还提供了num_updates参数来动态设置decay大小,避免模型前期训练的太慢
    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, num_updates=global_step)

    # 在所有代表神经网络参数的变量上使用滑动平均。tf.trainable_variables返回的就是
    # 图上集合GraphKeys.TRAINABLE_VARIABLESZ中的元素。这个集合的元素就是所有没有指定trainable=False的参数。
    variable_averages_op = variable_averages.apply(tf.trainable_variables())

    # 计算使用了滑动平均之后的前向传播结果
    # 可以在inference函数中注意到,需要使用滑动平均值时,需要明确调用average函数。
    # 因为滑动平均不会改变变量本身的取值,而是会维护一个影子变量来记录其滑动平均值,
    # 当需要使用这个滑动平均值时,需要明确指明调用average函数
    average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2)

    # 分类问题,计算交叉熵作为刻画预测和真是指之间差距的损失函数。这里使用TensorFlow中提供的
    # sparse_softmax_cross_entropy_with_logits函数来计算交叉熵。当分类只有一个正确答案时
    # 可以使用这个函数来计算交叉熵损失。
    # 这个函数的第一个参数是神经网络不包括softmax层的前向传播结果,第二个是训练数据的正确答案。
    # 因为标准答案是一个长度为10的一位数组,而该函数需要的是提供一个正确答案的数字,所以要使用tf.argmax
    # 函数来得到正确答案对应的编号
    # (2)tf.argmax()会在下面给出解释,编号为2
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    # 计算在当前batch中所有样例的交叉熵平均值
    # (3)tf.redunce_mean
    cross_entropy_mean = tf.reduce_mean(cross_entropy)

    # 计算L2正则化损失函数。
    regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
    # 计算模型的正则化损失。一般只计算权重的正则化损失,不计算偏置项
    regularization = regularizer(weights1) + regularizer(weights2)
    loss = cross_entropy_mean + regularization

    # 设置指数衰减的学习率。
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,  # 当前的轮数
        mnist.train.num_examples / BATCH_SIZE,  # 过完所有训练集需要的轮数
        # 如在加上参数staircase=True,上面两个数就保证了
        # 学习率没经过一次所有的训练数据就就乘以一次衰减率
        LEARNING_RATE_DECAY)

    # 使用tf.train.GradientDescentOptimizer优化算法来优化损失函数
    train_step = tf.train.GradientDescentOptimizer(learning_rate). \
        minimize(loss, global_step=global_step)

    # 在训练神经网络模型时,每过一遍数据需要通过反向传播来更新网络中的参数
    # 又要更新每一个参数的滑动平均值。为了一次完成多个操作,TensorFlow提供了
    # tf.group和tf.control_dependencies两种机制。
    # 这样写与下面一行代码是等价的
    # with tf.control_dependencies([train_step,variable_averages_op]):
    #     train_op = tf.no_op(name='train')
    # (感觉tf.group这种挺好记的,记录上面这种就为了以后看代码的时候防止看不懂吧)
    train_op = tf.group(train_step, variable_averages_op)

    # 检验正确率。现在这些代码看的明白,就不解释了。但是可能下次看就不明白了。。
    # 不明白就看书吧,书上有
    correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    correct_prediction_ = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    accuracy_ = tf.reduce_mean(tf.cast(correct_prediction_, tf.float32))

    # 终于可以开始训练了
    # 由于数据集比较小,所以没有划分为更小的batch。
    # 关于如何使用batch可以参考之前的博客
    with tf.Session() as sess:
        # ??? 咋直接run()了
        tf.global_variables_initializer().run()
        # 准备验证数据。这个一般都是用来大致判断停止的条件。
        validata_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
        # 准备测试数据
        test_feed = {x: mnist.test.images, y_: mnist.test.labels}

        # 迭代的训练神经网络
        for i in range(TRAINING_STEPS):
            # 每1000轮输出一次在验证集上的测试效果
            if i % 100 == 0:
                validata_acc = sess.run(accuracy, feed_dict=validata_feed)
                validata_acc_ = sess.run(accuracy_, feed_dict=validata_feed)
                print("%d training steps , validata_acc ,using average model is %g" % (i, validata_acc))
                print("%d training steps , validata_acc ,using average model is %g" % (i, validata_acc_))
            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            sess.run(train_op, feed_dict={x: xs, y_: ys})
        # 训练结束后,测试最终正确率
        test_acc = sess.run(accuracy, feed_dict=test_feed)
        test_acc_ = sess.run(accuracy_, feed_dict=test_feed)
        print("last acc %d", test_acc)
        print("last acc not use %d", test_acc_)


def main(argv=None):
    mnist = input_data.read_data_sets("path/", one_hot=True)
    train(mnist)


if __name__ == '__main__':
    tf.app.run()

其他

tf.variable是可以嵌套的,tf.get_variable_scope().reuse可以获取当前上下文管理器中的reuse参数。

import tensorflow as tf

# 在名字为one的命名空间创建名字为v的变量
with tf.variable_scope("one"):
    print(tf.get_variable_scope().reuse) #输出False
    with tf.variable_scope("two",reuse=True):
        print(tf.get_variable_scope().reuse) #输出True

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是基于TensorFlow使用LeNet-5实现对MNIST手写数字识别分类的代码。 ```python import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 导入MNIST数据集 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 定义输入和输出占位符 x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) # 将输入数据reshape成28x28的图像 x_image = tf.reshape(x, [-1, 28, 28, 1]) # 第一层卷积层 W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6], stddev=0.1)) b_conv1 = tf.Variable(tf.constant(0.1, shape=[6])) h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='VALID') + b_conv1) # 第一层池化层 h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # 第二层卷积层 W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16], stddev=0.1)) b_conv2 = tf.Variable(tf.constant(0.1, shape=[16])) h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2, strides=[1, 1, 1, 1], padding='VALID') + b_conv2) # 第二层池化层 h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # 将第二层池化层的输出reshape成一维向量 h_pool2_flat = tf.reshape(h_pool2, [-1, 5*5*16]) # 第一层全连接层 W_fc1 = tf.Variable(tf.truncated_normal([5*5*16, 120], stddev=0.1)) b_fc1 = tf.Variable(tf.constant(0.1, shape=[120])) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # 第二层全连接层 W_fc2 = tf.Variable(tf.truncated_normal([120, 84], stddev=0.1)) b_fc2 = tf.Variable(tf.constant(0.1, shape=[84])) h_fc2 = tf.nn.relu(tf.matmul(h_fc1, W_fc2) + b_fc2) # 输出层 W_fc3 = tf.Variable(tf.truncated_normal([84, 10], stddev=0.1)) b_fc3 = tf.Variable(tf.constant(0.1, shape=[10])) y_conv = tf.matmul(h_fc2, W_fc3) + b_fc3 # 计算损失函数 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_conv)) # 使用Adam算法最小化损失函数 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 计算模型在测试集上的准确率 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化变量 init = tf.global_variables_initializer() # 训练模型 with tf.Session() as sess: sess.run(init) for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={x: batch[0], y: batch[1]}) print("step %d, training accuracy %g" % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y: batch[1]}) print("test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y: mnist.test.labels})) ``` 以上代码实现了一个简单的LeNet-5模型对MNIST手写数字进行分类。在训练过程中,每100个步骤会输出一次训练集的准确率,最终输出测试集的准确率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值