【论文翻译|2019TKDE】EKT: Exercise-aware Knowledge Tracing for Student Performance Prediction

在这里插入图片描述


【注】 本文EKT加入练习的文本内容

摘要

在计算机支持的智能教育中,为学生提供主动的服务(如个性化的练习推荐),其基本任务之一是预测学生在未来练习中的表现(如分数),其中有必要跟踪每个学生在锻炼活动中知识获取的变化。遗憾的是,据我们所知,现有的方法只能挖掘学生的练习记录,而材料中存在着提取丰富信息(如知识概念、练习内容)的练习,以实现更精确的预测学生的表现和更可解释的分析的知识获取仍然有待探索。为此,本文提出了一个学生成绩预测的整体研究。为了直接实现成绩预测的主要目标,我们首先通过探索学生的练习记录和相应练习对应的文本内容提出了一个通用的练习增强递归神经网络(EERNN)框架。在EERNN中,我们简单地将每个学生的状态总结成一个整合的向量,然后用递归神经网络跟踪它,在这里我们设计了一个双向LSTM,通过其文本内容来学习每个练习的编码。为了进行最终的预测,我们在EERNN的基础上设计了两种不同预测策略的实现,即带有马尔可夫性质的EERNNM和带有注意机制的EERNNA。然后,为了明确地跟踪学生在多个知识概念上的知识获取,通过整合知识概念信息我们将EERNN扩展到一个可解释的练习感知的知识追踪(EKT)框架,其中将学生的综合状态向量扩展为知识状态矩阵。在EKT中,我们进一步开发了一个记忆网络,以量化每个练习在练习过程中对学生掌握多种不同知识概念的影响程度。最后,我们进行了广泛的实验,并在大规模的真实数据上评估了EERNN和EKT框架。在一般和冷启动情景下的结果都清楚地证明了两种框架在学生成绩预测中的有效性以及EKT的高可解释性。

1 引言

大规模在线开放课程(Massive Online Open Course)、Knewton.com和KhanAcedemy .org等教育系统可以通过开放获取数以百万计的在线课程或练习,借助计算机辅助技术帮助学生进行个性化学习。由于这些系统的普及性和便利性,引起了教育工作者和公众的极大关注。
具体来说,学生在这些系统中可以根据自己的需要选择练习,并在练习中获得必要的知识。图1展示了一个典型学生的运动过程的玩具示例。一般来说,当一个练习(例如e1)发布时,学生阅读它的内容(“If function…”),并应用关于“function”概念的相应知识来回答它。从图中可以看出,学生1做了四个习题,但她只做错了习题2,这可能说明她对“函数”和“不等式”的知识掌握得很好,除了“概率”的概念。我们可以看到,在这样的教育系统中,一个基本的任务是预测学生的表现(例如,分数),也就是说,预测一个学生在未来是否能正确地回答一个练习(例如,e5)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值