1 花体字母
$\mathbb{R}$
$\mathcal{R}$
$\mathscr{R}$
效果分别是
A
,
R
,
S
,
P
\mathbb{A} ,\mathbb{R}, \mathbb{S}, \mathbb{P}
A,R,S,P
A
,
R
,
S
,
P
\mathcal{A},\mathcal{R}, \mathcal{S}, \mathcal{P}
A,R,S,P
A
,
R
,
S
,
P
\mathscr{A},\mathscr{R},\mathscr{S},\mathscr{P}
A,R,S,P
2 常用数学符号
名称 | 语法 | 效果 | 名称 | 语法 | 效果 |
---|---|---|---|---|---|
任意 | \forall | ∀ \forall ∀ | 存在 | \exists | ∃ \exists ∃ |
无穷 | \infty | ∞ \infty ∞ | 属于 | \in | ∈ \in ∈ |
左箭头 | \leftarrow | ← \leftarrow ← | 右箭头 | \rightarrow | → \rightarrow → |
上箭头 | \uparrow | ↑ \uparrow ↑ | 下箭头 | downarrow | ↓ \downarrow ↓ |
两端箭头 | \leftrightarrow | ↔ \leftrightarrow ↔ |
3 常用数学字母
名称 | 语法 | 效果 | 名称 | 语法 | 效果 |
---|---|---|---|---|---|
派 | \pi | π \pi π | 阿尔法 | \alpha | α \alpha α |
贝塔 | \beta | β \beta β | 伽马 | \gamma | γ \gamma γ |
4 矩阵的表示
参见https://blog.csdn.net/qq_38228254/article/details/79469727
5 连加和连乘
\sum_{i=1}^{n}
效果:
∑
i
=
1
n
\sum_{i=1}^{n}
i=1∑n
\prod_{i=1}^{n}
效果:
∏
i
=
1
n
\prod_{i=1}^{n}
i=1∏n
其中
_
后面加的是下标,^
后面加的是上标
6 Latex公式的格式设置
6.1 换行对齐
$$
\begin{aligned}
V_\pi(s)=&G_{t1}·P(a_1)·p_1+G_{t2}·P(a_1)·p_2+G_{t3}·P(a_1)·p_3+\\
&G_{t4}·P(a_2)·p_4+G_{t5}·P(a_2)·p_5+G_{t6}·P(a_2)·p_6+\\
&G_{t7}·P(a_3)·p_7+G_{t8}·P(a_3)·p_8+G_{t9}·P(a_3)·p_9
\end{aligned}
$$
效果:
V
π
(
s
)
=
G
t
1
⋅
P
(
a
1
)
⋅
p
1
+
G
t
2
⋅
P
(
a
1
)
⋅
p
2
+
G
t
3
⋅
P
(
a
1
)
⋅
p
3
+
G
t
4
⋅
P
(
a
2
)
⋅
p
4
+
G
t
5
⋅
P
(
a
2
)
⋅
p
5
+
G
t
6
⋅
P
(
a
2
)
⋅
p
6
+
G
t
7
⋅
P
(
a
3
)
⋅
p
7
+
G
t
8
⋅
P
(
a
3
)
⋅
p
8
+
G
t
9
⋅
P
(
a
3
)
⋅
p
9
\begin{aligned} V_\pi(s)=&G_{t1}·P(a_1)·p_1+G_{t2}·P(a_1)·p_2+G_{t3}·P(a_1)·p_3+\\ &G_{t4}·P(a_2)·p_4+G_{t5}·P(a_2)·p_5+G_{t6}·P(a_2)·p_6+\\ &G_{t7}·P(a_3)·p_7+G_{t8}·P(a_3)·p_8+G_{t9}·P(a_3)·p_9 \end{aligned}
Vπ(s)=Gt1⋅P(a1)⋅p1+Gt2⋅P(a1)⋅p2+Gt3⋅P(a1)⋅p3+Gt4⋅P(a2)⋅p4+Gt5⋅P(a2)⋅p5+Gt6⋅P(a2)⋅p6+Gt7⋅P(a3)⋅p7+Gt8⋅P(a3)⋅p8+Gt9⋅P(a3)⋅p9
备注:&在哪,就在哪里对齐。
6.2 公式带编号
\tag{编号}
编号有括号
$$
\begin{aligned}
V_\pi(s)=&G_{t1}·P(a_1)·p_1+G_{t2}·P(a_1)·p_2+G_{t3}·P(a_1)·p_3+\\
&G_{t4}·P(a_2)·p_4+G_{t5}·P(a_2)·p_5+G_{t6}·P(a_2)·p_6+\\
&G_{t7}·P(a_3)·p_7+G_{t8}·P(a_3)·p_8+G_{t9}·P(a_3)·p_9 \tag{1-1}
\end{aligned}
$$
V π ( s ) = G t 1 ⋅ P ( a 1 ) ⋅ p 1 + G t 2 ⋅ P ( a 1 ) ⋅ p 2 + G t 3 ⋅ P ( a 1 ) ⋅ p 3 + G t 4 ⋅ P ( a 2 ) ⋅ p 4 + G t 5 ⋅ P ( a 2 ) ⋅ p 5 + G t 6 ⋅ P ( a 2 ) ⋅ p 6 + G t 7 ⋅ P ( a 3 ) ⋅ p 7 + G t 8 ⋅ P ( a 3 ) ⋅ p 8 + G t 9 ⋅ P ( a 3 ) ⋅ p 9 (1-1) \begin{aligned} V_\pi(s)=&G_{t1}·P(a_1)·p_1+G_{t2}·P(a_1)·p_2+G_{t3}·P(a_1)·p_3+\\ &G_{t4}·P(a_2)·p_4+G_{t5}·P(a_2)·p_5+G_{t6}·P(a_2)·p_6+\\ &G_{t7}·P(a_3)·p_7+G_{t8}·P(a_3)·p_8+G_{t9}·P(a_3)·p_9 \tag{1-1} \end{aligned} Vπ(s)=Gt1⋅P(a1)⋅p1+Gt2⋅P(a1)⋅p2+Gt3⋅P(a1)⋅p3+Gt4⋅P(a2)⋅p4+Gt5⋅P(a2)⋅p5+Gt6⋅P(a2)⋅p6+Gt7⋅P(a3)⋅p7+Gt8⋅P(a3)⋅p8+Gt9⋅P(a3)⋅p9(1-1)
\tag*{编号}
编号无括号
$$
\begin{aligned}
V_\pi(s)=&G_{t1}·P(a_1)·p_1+G_{t2}·P(a_1)·p_2+G_{t3}·P(a_1)·p_3+\\
&G_{t4}·P(a_2)·p_4+G_{t5}·P(a_2)·p_5+G_{t6}·P(a_2)·p_6+\\
&G_{t7}·P(a_3)·p_7+G_{t8}·P(a_3)·p_8+G_{t9}·P(a_3)·p_9 \tag*{1-1}
\end{aligned}
$$
V π ( s ) = G t 1 ⋅ P ( a 1 ) ⋅ p 1 + G t 2 ⋅ P ( a 1 ) ⋅ p 2 + G t 3 ⋅ P ( a 1 ) ⋅ p 3 + G t 4 ⋅ P ( a 2 ) ⋅ p 4 + G t 5 ⋅ P ( a 2 ) ⋅ p 5 + G t 6 ⋅ P ( a 2 ) ⋅ p 6 + G t 7 ⋅ P ( a 3 ) ⋅ p 7 + G t 8 ⋅ P ( a 3 ) ⋅ p 8 + G t 9 ⋅ P ( a 3 ) ⋅ p 9 1-1 \begin{aligned} V_\pi(s)=&G_{t1}·P(a_1)·p_1+G_{t2}·P(a_1)·p_2+G_{t3}·P(a_1)·p_3+\\ &G_{t4}·P(a_2)·p_4+G_{t5}·P(a_2)·p_5+G_{t6}·P(a_2)·p_6+\\ &G_{t7}·P(a_3)·p_7+G_{t8}·P(a_3)·p_8+G_{t9}·P(a_3)·p_9 \tag*{1-1} \end{aligned} Vπ(s)=Gt1⋅P(a1)⋅p1+Gt2⋅P(a1)⋅p2+Gt3⋅P(a1)⋅p3+Gt4⋅P(a2)⋅p4+Gt5⋅P(a2)⋅p5+Gt6⋅P(a2)⋅p6+Gt7⋅P(a3)⋅p7+Gt8⋅P(a3)⋅p8+Gt9⋅P(a3)⋅p91-1