数字信号处理(七)FIR数字滤波器的设计

FIR滤波器

滤波器的单位脉冲响应h(n)是有限长序列,N-1阶FIR数字滤波器的系统函数为:
H ( z ) = ∑ n = 0 N − 1 h ( n ) z − n H(z)=\sum_{n=0}^{N-1}h(n)z^{-n} H(z)=n=0N1h(n)zn
稳定线性相位特性是FIR滤波器最突出的优点

线性相位FIR滤波器的条件及特点

线性相位FIR滤波器

对于长度为N的h(n),频率响应函数为:
H ( e j ω ) = ∑ n = 0 N − 1 h ( n ) e − j ω n = H g ( ω ) e j θ ( ω ) H(e^{j\omega})=\sum_{n=0}^{N-1}h(n)e^{-j\omega n}=H_g(\omega)e^{j\theta(\omega)} H(ejω)=n=0N1h(n)ejωn=Hg(ω)ejθ(ω)
式中, H g ( ω ) H_g(\omega) Hg(ω)幅度特性,为 ω \omega ω的实函数,可能取负值,不同于 ∣ H ( e j ω ) ∣ |H(e^{j\omega})| H(ejω)(只为正值); θ ( ω ) \theta(\omega) θ(ω)相位特性

线性相位条件

H ( e j ω ) H(e^{j\omega}) H(ejω)线性相位是指 θ ( ω ) \theta(\omega) θ(ω) ω \omega ω的线性函数,即
θ ( ω ) = − τ ω , τ 为 常 数 , 该 式 属 于 严 格 线 性 相 位 ( 第 一 类 线 性 相 位 ) \theta(\omega)=-\tau\omega,\tau为常数,该式属于严格线性相位(第一类线性相位) θ(ω)=τω,τ线(线)
但是,如果 θ ( ω ) \theta(\omega) θ(ω)满足下式:
θ ( ω ) = θ 0 − τ ω , θ 0 是 初 始 相 位 , 该 式 属 于 广 义 线 性 相 位 ( 第 二 类 线 性 相 位 ) \theta(\omega)=\theta_0-\tau\omega,\theta_0是初始相位,该式属于广义线性相位(第二类线性相位) θ(ω)=θ0τω,θ0广线(线)
严格地说,此时 θ ( ω ) \theta(\omega) θ(ω)不具有线性相位

但以上两种情况都满足群时延是一个常数,即: − d θ ( ω ) d ω = τ -\frac{d\theta(\omega)}{d\omega}=\tau dωdθ(ω)=τ

为了使滤波器对实信号的处理结果仍然是实信号,一般要求h(n)为实序列:

  • 满足第一类线性相位的时域约束条件是:h(n)是实序列,且对(N-1)/2偶对称,即: τ = ( N − 1 ) / 2 , h ( n ) = h ( N − n − 1 ) \tau=(N-1)/2,h(n)=h(N-n-1) τ=(N1)/2,h(n)=h(Nn1)
  • 满足第二类线性相位的时域约束条件是:h(n)是实序列,且对(N-1)/2奇对称,即: τ = ( N − 1 ) / 2 , h ( n ) = − h ( N − n − 1 ) \tau=(N-1)/2,h(n)=-h(N-n-1) τ=(N1)/2,h(n)=h(Nn1)

线性相位FIR滤波器幅度特性

当N取奇数和偶数时,对 H g ( ω ) H_g(\omega) Hg(ω)的约束不同,因此,对于两类线性相位特性,分四种情况讨论其幅度特性的特点

类型1:h(n)=h(N-n-1),N=奇数

推导其频率响应:
在这里插入图片描述
令m=N-1-n,有:
H ( e j ω ) = ∑ n = 0 ( N − 3 ) / 2 h ( n ) e − j ω n + h ( N − 1 2 ) ⋅ e − j ( N − 1 ) ω / 2 + ∑ m = 0 ( N − 3 ) / 2 h ( N − 1 − m ) e − j ( N − 1 − m ) ω H(e^{j\omega})=\sum_{n=0}^{(N-3)/2}h(n)e^{-j\omega n}+h(\frac{N-1}2)\cdot e^{-j(N-1)\omega/2}+\sum_{m=0}^{(N-3)/2}h(N-1-m)e^{-j(N-1-m)\omega} H(ejω)=n=0(N3)/2h(n)ejωn+h(2N1)ej(N1)ω/2+m=0(N3)/2h(N1m)ej(N1m)ω
利用h(n)的对称性:h(N-1-m)=h(m),并提取 e − j ( N − 1 ) ω / 2 e^{-j(N-1)\omega /2} ej(N1)ω/2
H ( e j ω ) = ∑ n = 0 ( N − 3 ) / 2 h ( n ) e − j ω n + h ( N − 1 2 ) ⋅ e − j ( N − 1 ) ω / 2 + ∑ m = 0 ( N − 3 ) / 2 h ( N − 1 − m ) e − j ( N − 1 − m ) ω = e − j ( N − 1 ) ω / 2 [ ∑ m = 0 ( N − 3 ) / 2 h ( m ) e − j ω m e j ( N − 1 ) ω / 2 + ∑ m = 0 ( N − 3 ) / 2 h ( m ) e j ω m e − j ( N − 1 ) ω / 2 + h ( N − 1 2 ) ] = e − j ( N − 1 ) ω / 2 [ 2 ∑ m = 0 ( N − 3 ) / 2 h ( m ) c o s [ ( N − 1 2 − m ) ω ] + h ( N − 1 2 ) ] H(e^{j\omega})=\sum_{n=0}^{(N-3)/2}h(n)e^{-j\omega n}+h(\frac{N-1}2)\cdot e^{-j(N-1)\omega/2}+\sum_{m=0}^{(N-3)/2}h(N-1-m)e^{-j(N-1-m)\omega}\\ =e^{-j(N-1)\omega /2}[\sum_{m=0}^{(N-3)/2}h(m)e^{-j\omega m}e^{j(N-1)\omega/2}+\sum_{m=0}^{(N-3)/2}h(m)e^{j\omega m}e^{-j(N-1)\omega/2}+h(\frac{N-1}2)]\\ =e^{-j(N-1)\omega /2}[2\sum_{m=0}^{(N-3)/2}h(m)cos[(\frac{N-1}2-m)\omega]+h(\frac{N-1}2)] H(ejω)=n=0(N3)/2h(n)ejωn+h(2N1)ej(N1)ω/2+m=0(N3)/2h(N1m)ej(N1m)ω=ej(N1)ω/2[m=0(N3)/2h(m)ejωmej(N1)ω/2+m=0(N3)/2h(m)ejωmej(N1)ω/2+h(2N1)]=ej(N1)ω/2[2m=0(N3)/2h(m)cos[(2N1m)ω]+h(2N1)]
再令m=(N-1)/2-n,得:
H ( e j ω ) = e − j ( N − 1 ) ω / 2 [ 2 ∑ n = 1 ( N − 1 ) / 2 h ( N − 1 2 − n ) c o s ( ω n ) + h ( N − 1 2 ) ] H(e^{j\omega})=e^{-j(N-1)\omega /2}[2\sum_{n=1}^{(N-1)/2}h(\frac{N-1}2-n)cos(\omega n)+h(\frac{N-1}2)] H(ejω)=ej(N1)ω/2[2n=1(N1)/2h(2N1n)cos(ωn)+h(2N1)]

a ( n ) = { h ( N − 1 2 ) n = 0 2 h ( N − 1 2 − n ) n = 1 , 2 , . . . , ( N − 1 ) / 2 a(n)=\begin{cases} h(\frac{N-1}2)&n=0\\ 2h(\frac{N-1}2-n)&n=1,2,...,(N-1)/2 \end{cases} a(n)={h(2N1)2h(2N1n)n=0n=1,2,...,(N1)/2

H ( e j ω ) = e − j ( N − 1 ) ω / 2 ∑ n = 0 ( N − 1 ) / 2 a ( n ) c o s ( ω n ) H(e^{j\omega})=e^{-j(N-1)\omega /2}\sum_{n=0}^{(N-1)/2}a(n)cos(\omega n) H(ejω)=ej(N1)ω/2n=0(N1)/2a(n)cos(ωn)
对比: H ( e j ω ) = H g ( ω ) e j θ ( ω ) H(e^{j\omega})=H_g(\omega)e^{j\theta(\omega)} H(ejω)=Hg(ω)ejθ(ω)

因此:
θ ( ω ) = − N − 1 2 ω , H g ( ω ) = ∑ n = 0 ( N − 1 ) / 2 a ( n ) c o s ( ω n ) \theta(\omega)=-\frac{N-1}2\omega,H_g(\omega)=\sum_{n=0}^{(N-1)/2}a(n)cos(\omega n) θ(ω)=2N1ω,Hg(ω)=n=0(N1)/2a(n)cos(ωn)
在这里插入图片描述
(上图中,低通滤波器满足在 ω = 0 \omega=0 ω=0对称,高通滤波器满足在 ω = π \omega=\pi ω=π对称,带阻滤波器满足在 ω = 0 和 ω = π \omega=0和\omega=\pi ω=0ω=π均对称,带通滤波器无要求)

由于 H g ( ω ) 中 c o s ω n H_g(\omega)中cos\omega n Hg(ω)cosωn项对 ω = 0 , π , 2 π \omega=0,\pi,2\pi ω=0,π,2π皆为偶对称,因此幅度特性的特点是对 ω = 0 , π , 2 π \omega=0,\pi,2\pi ω=0,π,2π为偶对称,如上图所示,因此类型1可用于设计各种滤波器

类型2:h(n)=h(N-n-1),N=偶数

H ( e j ω ) = e − j ω τ ∑ n = 0 ( N − 1 ) / 2 2 h ( n ) c o s [ ω ( n − τ ) ] , 式 中 , τ = ( N − 1 ) / 2 H(e^{j\omega})=e^{-j\omega \tau}\sum_{n=0}^{(N-1)/2}2h(n)cos[\omega( n-\tau)],式中,\tau=(N-1)/2 H(ejω)=ejωτn=0(N1)/22h(n)cos[ω(nτ)],τ=(N1)/2

因此
H g ( ω ) = ∑ n = 0 ( N − 1 ) / 2 2 h ( n ) c o s [ ω ( n − τ ) ] H_g(\omega)=\sum_{n=0}^{(N-1)/2}2h(n)cos[\omega( n-\tau)] Hg(ω)=n=0(N1)/22h(n)cos[ω(nτ)]
ω = π \omega=\pi ω=π时, c o s [ ω ( n − τ ) ] = c o s [ π ( n − N 2 ) + π 2 ] = − s i n [ π ( n − N 2 ) ] = 0 ( N 2 为 整 数 ) cos[\omega(n-\tau)]=cos[\pi(n-\frac N2)+\frac\pi2]=-sin[\pi(n-\frac N2)]=0(\frac N2为整数) cos[ω(nτ)]=cos[π(n2N)+2π]=sin[π(n2N)]=0(2N)

所以 H g ( π ) = 0 H_g(\pi)=0 Hg(π)=0,说明 H g ( ω ) H_g(\omega) Hg(ω)关于 ω = π \omega=\pi ω=π奇对称,当 ω = 2 π \omega=2\pi ω=2π时, H g ( ω ) H_g(\omega) Hg(ω)关于 ω = 0 和 ω = 2 π \omega=0和\omega=2\pi ω=0ω=2π偶对称。因此类型2不能实现高通和带阻滤波器

类型3:h(n)=-h(N-n-1),N=奇数

H g ( ω ) = ∑ n = 0 ( N − 1 ) / 2 2 h ( n ) s i n [ ω ( n − τ ) ] H_g(\omega)=\sum_{n=0}^{(N-1)/2}2h(n)sin[\omega(n-\tau)] Hg(ω)=n=0(N1)/22h(n)sin[ω(nτ)]

式中,N为奇数, τ = ( N − 1 ) / 2 \tau=(N-1)/2 τ=(N1)/2是整数,说明 H g ( ω ) H_g(\omega) Hg(ω)关于 ω = 0 , ω = π 和 ω = 2 π \omega=0,\omega=\pi和\omega=2\pi ω=0ω=πω=2π奇对称,因此类型3只能用来实现带通滤波器

类型4:h(n)=-h(N-n-1),N=偶数

H g ( ω ) = ∑ n = 0 ( N − 1 ) / 2 2 h ( n ) s i n [ ω ( n − τ ) ] H_g(\omega)=\sum_{n=0}^{(N-1)/2}2h(n)sin[\omega(n-\tau)] Hg(ω)=n=0(N1)/22h(n)sin[ω(nτ)]

式中,N为奇数, τ = ( N − 1 ) / 2 \tau=(N-1)/2 τ=(N1)/2

当 ω = 0 和 ω = 2 π 时 , s i n [ ω ( n − τ ) ] = 0 当\omega=0和\omega=2\pi时,sin[\omega(n-\tau)]=0 ω=0ω=2πsin[ω(nτ)]=0

当 ω = π 时 , s i n [ ω ( n − τ ) ] 取 得 最 大 值 当\omega=\pi时,sin[\omega(n-\tau)]取得最大值 ω=π,sin[ω(nτ)]

说明, H g ( ω ) H_g(\omega) Hg(ω)关于 ω = 0 和 ω = 2 π \omega=0和\omega=2\pi ω=0ω=2π奇对称,关于 ω = π \omega=\pi ω=π偶对称,因此类型4不能用来实现低通和带阻滤波器

奇偶对称的单位脉冲响应

偶对称单位脉冲响应:
在这里插入图片描述
奇对称单位脉冲响应:
在这里插入图片描述

FIR滤波器的窗函数设计法

窗函数设计法的原理

如果滤波器的单位取样响应 h d ( n ) h_d(n) hd(n)无限长,要用FIR滤波器实现,就必须截断无限长的序列,以得到有限长的单位取样响应h(n)

为了构造一个长度为N的线性相位滤波器,由 h d ( n ) h_d(n) hd(n)截取h(n)时,必须保证截取的一段对 ( N − 1 ) / 2 (N-1)/2 (N1)/2对称

  • 将h(n)表示为 h d ( n ) h_d(n) hd(n)和窗函数 w ( n ) w(n) w(n)的乘积:

    h ( n ) = w ( n ) ⋅ h d ( n ) h(n)=w(n)\cdot h_d(n) h(n)=w(n)hd(n)

  • 当w(n)的取值区间在0至N-1时,截断后滤波器的频率响应为有限项级数和:
    H ( e j ω ) = ∑ n = 0 N − 1 h ( n ) e − j w = ∑ n = − ∞ + ∞ w ( n ) ⋅ h d ( n ) ⋅ e − j ω n H(e^{j\omega})=\sum_{n=0}^{N-1}h(n)e^{-jw}=\sum_{n=-\infty}^{+\infty}w(n)\cdot h_d(n)\cdot e^{-j\omega n} H(ejω)=n=0N1h(n)ejw=n=+w(n)hd(n)ejωn
    H ( e j ω ) 是 H d ( e j ω ) H(e^{j\omega})是H_d(e^{j\omega}) H(ejω)Hd(ejω)在均方误差最小下的最优逼近

典型窗函数及其特性

1、矩形窗
在这里插入图片描述

w ( n ) = R N ( n ) = { 1 0 ≤ n ≤ N − 1 0 其 他 W R ( e j ω ) = ∑ n = 0 N − 1 e − j ω n = s i n ( ω N / 2 ) s i n ( ω / 2 ) e − j ω ( N − 1 2 ) w(n)=R_N(n)=\begin{cases} 1&0\leq n\leq N-1\\ 0&其他 \end{cases} \\ W_R(e^{j\omega})=\sum_{n=0}^{N-1}e^{-j\omega n}=\frac{sin(\omega N/2)}{sin(\omega /2)}e^{-j\omega(\frac{N-1}2)} w(n)=RN(n)={100nN1WR(ejω)=n=0N1ejωn=sin(ω/2)sin(ωN/2)ejω(2N1)
2、三角窗(又称Bartlett窗)
在这里插入图片描述

w ( n ) = { 2 n N n = 0 , 1 , . . . , N 2 w ( N − n ) n = N 2 , . . . , N − 1 或 w ( n ) = 1 − 2 ∣ n ∣ N , n = − N 2 , . . . , 0 , . . . N 2 w(n)=\begin{cases} \frac{2n}N&n=0,1,...,\frac N2\\ w(N-n)&n=\frac N2,...,N-1 \end{cases} \\或w(n)=1-\frac{2|n|}N,n=-\frac N2,...,0,...\frac N2 w(n)={N2nw(Nn)n=0,1,...,2Nn=2N,...,N1w(n)=1N2n,n=2N,...,0,...2N

W ( e j ω ) = 2 N e − j N − 1 2 ω [ s i n ( ω N 4 ) s i n ( ω 2 ) ] 2 W(e^{j\omega})=\frac2Ne^{-j\frac{N-1}{2}\omega}[\frac{sin(\frac{\omega N}4)}{sin(\frac\omega2)}]^2 W(ejω)=N2ej2N1ω[sin(2ω)sin(4ωN)]2

3、汉宁(Hanning)窗(升余弦窗)
在这里插入图片描述

w ( n ) = 0.5 − 0.5 c o s ( 2 π n N ) , n = 0 , 1 , . . . , N − 1 或 w ( n ) = 0.5 + 0.5 c o s ( 2 π n N ) , n = − N 2 , . . . , 0 , . . . , N 2 w(n)=0.5-0.5cos(\frac{2\pi n}N),n=0,1,...,N-1\\ 或w(n)=0.5+0.5cos(\frac{2\pi n}N),n=-\frac N2,...,0,...,\frac N2 w(n)=0.50.5cos(N2πn),n=0,1,...,N1w(n)=0.5+0.5cos(N2πn),n=2N,...,0,...,2N

W ( e j ω ) = 0.5 U ( ω ) + 0.25 [ U ( ω − 2 π N ) + U ( ω + 2 π N ) ] , 式 中 U ( ω ) = e j ω / 2 s i n ( ω N 2 ) / s i n ( ω 2 ) W(e^{j\omega})=0.5U(\omega)+0.25[U(\omega-\frac{2\pi}N)+U(\omega+\frac{2\pi}N)],式中U(\omega)=e^{j\omega/2}sin(\frac{\omega N}2)/sin(\frac \omega2) W(ejω)=0.5U(ω)+0.25[U(ωN2π)+U(ω+N2π)],U(ω)=ejω/2sin(2ωN)/sin(2ω)

4、汉明(Hamming)窗(改进升余弦窗)
在这里插入图片描述

w ( n ) = 0.54 − 0.46 c o s ( 2 π n N ) , n = 0 , 1 , . . . , N − 1 或 w ( n ) = 0.54 + 0.46 c o s ( 2 π n N ) , n = − N 2 , . . . , 0 , . . . , N 2 w(n)=0.54-0.46cos(\frac{2\pi n}N),n=0,1,...,N-1\\ 或w(n)=0.54+0.46cos(\frac{2\pi n}N),n=-\frac N2,...,0,...,\frac N2 w(n)=0.540.46cos(N2πn),n=0,1,...,N1w(n)=0.54+0.46cos(N2πn),n=2N,...,0,...,2N

W ( e j ω ) = 0.54 U ( ω ) + 0.23 [ U ( ω − 2 π N ) + U ( ω + 2 π N ) ] W(e^{j\omega})=0.54U(\omega)+0.23[U(\omega-\frac{2\pi}N)+U(\omega+\frac{2\pi}N)] W(ejω)=0.54U(ω)+0.23[U(ωN2π)+U(ω+N2π)]

5、布莱克曼(Blackman)窗
在这里插入图片描述

w ( n ) = 0.42 − 0.5 c o s ( 2 π n N ) + 0.08 c o s ( 4 π n N ) , n = 0 , 1 , . . . , N − 1 或 w ( n ) = 0.42 − 0.5 c o s ( 2 π n N ) + 0.08 c o s ( 4 π n N ) , n = − N 2 , . . . , 0 , . . . , N 2 w(n)=0.42-0.5cos(\frac{2\pi n}N)+0.08cos(\frac{4\pi n}N),n=0,1,...,N-1\\ 或w(n)=0.42-0.5cos(\frac{2\pi n}N)+0.08cos(\frac{4\pi n}N),n=-\frac N2,...,0,...,\frac N2 w(n)=0.420.5cos(N2πn)+0.08cos(N4πn),n=0,1,...,N1w(n)=0.420.5cos(N2πn)+0.08cos(N4πn),n=2N,...,0,...,2N
6、上述5种窗函数的频谱
在这里插入图片描述

窗名称近似过渡带宽精确过渡带宽最小阻带衰减
矩形窗 4 π / N 4\pi/N 4π/N 1.8 π / N 1.8\pi/N 1.8π/N21dB
三角窗 8 π / N 8\pi/N 8π/N 6.1 π / N 6.1\pi/N 6.1π/N25dB
汉宁窗 8 π / N 8\pi/N 8π/N 6.2 π / N 6.2\pi/N 6.2π/N44dB
汉明窗 8 π / N 8\pi/N 8π/N 6.6 π / N 6.6\pi/N 6.6π/N51dB
布莱克曼窗 12 π / N 12\pi/N 12π/N 11 π / N 11\pi/N 11π/N74dB

窗函数法设计FIR滤波器步骤

1、根据所需设计的数字滤波器类型(低通,高通,带通,带阻),确定线性相位数字滤波器类型 ( I , I I , I I I , I V ) (I,II,III,IV) (I,II,III,IV)

2、选择合适的窗函数 w ( n ) w(n) w(n):根据滤波器阻带衰减 α s \alpha_s αs选择窗函数 w ( n ) w(n) w(n)的种类,然后根据滤波器过渡带宽度,确定所选窗函数的长度N。用窗函数设计的FIR数字滤波器的通带波纹幅度近似等于阻带波纹幅度,所以通常只考虑阻带最小衰减就可以。

3、确定理想数字滤波器的频率响应函数:
H d ( e j ω ) = H d ( ω ) e j θ d ( ω ) H_d(e^{j\omega})=H_d(\omega)e^{j\theta_d(\omega)} Hd(ejω)=Hd(ω)ejθd(ω)
对严格线性相位FIR数字滤波器 θ d ( ω ) = − ω ( N − 1 ) / 2 \theta_d(\omega)=-\omega(N-1)/2 θd(ω)=ω(N1)/2

对广义线性相位FIR数字滤波器 θ d ( ω ) = − π / 2 − ω ( N − 1 ) / 2 \theta_d(\omega)=-\pi/2-\omega(N-1)/2 θd(ω)=π/2ω(N1)/2

理想数字滤波器的截止频率 ω c \omega_c ωc近似为最终设计的FIR数字滤波器的过渡带中心频率,所以一般取 ω c = ( ω p + ω s ) / 2 \omega_c=(\omega_p+\omega_s)/2 ωc=(ωp+ωs)/2 ω p 和 ω s \omega_p和\omega_s ωpωs分别为通带边界频率和阻带边界频率。

4、计算理想数字滤波器的单位脉冲响应
h d ( n ) = 1 2 π ∫ − π π H d ( e j ω ) e j ω n d ω h_d(n)=\frac1{2\pi}\int_{-\pi}^{\pi}H_d(e^{j\omega})e^{j\omega n}d\omega hd(n)=2π1ππHd(ejω)ejωndω
5、加窗得到设计结果
h ( n ) = h d ( n ) w ( n ) h(n)=h_d(n)w(n) h(n)=hd(n)w(n)

FIR滤波器的频率采样设计法

频率采样法的原理

根据频域采样定理, 一个长度为M的有限长序列 x ( n ) x(n) x(n),可通过其频谱函数的 N ≥ M N\geq M NM点等间隔采样值 X ( k ) X(k) X(k)准确的恢复原信号 x ( n ) x(n) x(n),即 x ( n ) = x N ( n ) = I D F T [ X ( k ) ] x(n)=x_N(n)=IDFT[X(k)] x(n)=xN(n)=IDFT[X(k)]。设待设计的滤波器的传输函数用 H d ( e j ω ) H_d(e^{j\omega}) Hd(ejω)表示,对它在 ω = 0 ∽ 2 π \omega=0 \backsim2\pi ω=02π之间等间隔采样N点,得到 H d ( k ) H_d(k) Hd(k)
H d ( k ) = H d ( e j ω ) ∣ ω = 2 π N k , k = 0 , 1 , 2 , . . . , N − 1 H_d(k)=H_d(e^{j\omega})|_{\omega=\frac{2\pi}Nk},k=0,1,2,...,N-1 Hd(k)=Hd(ejω)ω=N2πk,k=0,1,2,...,N1
再对N点 H d ( k ) H_d(k) Hd(k)进行IDFT,得到 h ( n ) h(n) h(n),即为所设计的滤波器的单位取样响应:
h ( n ) = 1 N ∑ k = 0 N − 1 H d ( k ) e j 2 π N k n , k = 0 , 1 , 2 , . . . , N − 1 h(n)=\frac1N\sum_{k=0}^{N-1}H_d(k)e^{j\frac{2\pi}Nkn},k=0,1,2,...,N-1 h(n)=N1k=0N1Hd(k)ejN2πkn,k=0,1,2,...,N1
根据频域采样定理,其系统函数 H ( z ) H(z) H(z)可写成:
H ( z ) = ∑ n = 0 N − 1 h ( n ) z − n = 1 − z − N N ∑ k = 0 N − 1 H d ( k ) 1 − e j 2 π N k z − 1 H(z)=\sum_{n=0}^{N-1}h(n)z^{-n}=\frac{1-z^{-N}}N\sum_{k=0}^{N-1}\frac {H_d(k)}{1-e^{j\frac{2\pi}Nk}z^{-1}} H(z)=n=0N1h(n)zn=N1zNk=0N11ejN2πkz1Hd(k)
用频率采样法设计线性相位滤波器的条件:
H d ( k ) = H g ( k ) e j θ ( k ) θ ( k ) = − N − 1 N π k H g ( k ) = H g ( N − k ) , N = 奇 数 H g ( k ) = − H g ( N − k ) , N = 偶 数 H_d(k)=H_g(k)e^{j\theta(k)} \\ \theta(k)=-\frac{N-1}N\pi k \\ H_g(k)=H_g(N-k),N=奇数 \\ H_g(k)=-H_g(N-k),N=偶数 Hd(k)=Hg(k)ejθ(k)θ(k)=NN1πkHg(k)=Hg(Nk),N=Hg(k)=Hg(Nk),N=

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值