创意项目_用PaddleHub抠图后再分类
最近参加百度PaddlePaddle(https://paddlepaddle.org.cn/)的线上师资培训,学习好了很多好东西,和我之前所用的pytorch,tensorflow相比,模型框架类似,关键在于PaddlePaddle基本国内的用户出发,提供了非常容易理解的文档和案例模型,对初习者来说,利用PaddlePaddle进行尝试学习是能够坚持和实现自己想法的是好场所。详情请参见 https://paddlepaddle.org.cn/
一、想法:利用paddlehub进行图像分类时,有时准确率不是很理想,会不会是图像中的干扰比较多,所以就想到了一个方法:先抠图,再分类。
本项目采用的数据集是之前的“PaddleHub图像分类作业”中的乘风破浪的姐姐的数据集。
二、实施步骤:
1、上传sisters.zip 解压,可以利用PaddleHub先进行分类,并保存分类的结果。具体过程见代码。
2、对sisters数据集进行抠图,并形成PaddleHub要求的格式规范。具体过程见代码。
3、对抠图后的数据进行相同模型的PaddleHub分类,保存分类的结果。具体过程见代码。
4、对两种数据集的分类结果进行比较分析。
三、实验结果(结果分析):
#抠图前的finetune情况的结果(15轮):EVAL] - [test dataset evaluation result] loss=0.81379 acc=0.87500 [step/sec: 66.09]
#抠图前图像预测结果:input 1 is data/sisters/infer/infer_ningjing.jpg, and the predict result is 万茜
#抠图后的finetune情况的结果(15轮):EVAL] - [test dataset evaluation result] loss=0.57906 acc=1.00000 [step/sec: 28.38]
#抠图后图像预测结果:input 1 is data/sisters/infer/infer_ningjing.jpg, and the predict result is 宁静
#抠图前的finetune情况的结果(30轮):EVAL] - [test dataset evaluation result] loss=0.94754 acc=0.75000 [step/sec: 69.18]
#抠图前图像预测结果:input 1 is data/sisters/infer/infer_ningjing.jpg, and the predict result is 万茜
#抠图后的finetune情况的结果(30轮):EVAL] - [test dataset evaluation result] loss=0.57906 acc=1.00000 [step/sec: 28.55]
#抠图后图像预测结果:input 1 is data/sisters/infer/infer_ningjing.jpg, and the predict result is 宁静
从目前的实验结果来看,效果比较反复,有时比较理想的,准确率也有比较大的提升,预测结果也比较准确,有时结果和没有抠图前一样,没有太大变化。会不会是数据集太小超成的呢?由于目前只在一个数据集上实验,所以接下来想拿更多的数据集来验证,看看“先抠图再分类”在其他数据集上的表现,很是期待呀。
请点击此处查看本环境基本用法.
Please click