人脸图像数据库(完整版)

1.FERET人脸数据库(美国军方) 

http://www.nist.gov/itl/iad/ig/colorferet.cfm
FERET项目创建,此图像集包含大量的人脸图像,并且每幅图中均只有一个人脸。该集中,同一个人的照片有不同表情,光照,姿态和年龄的变化。包含1万多张多姿态和光照的人脸图像,是人脸识别领域应用最广泛的人脸数据库之一.其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一。

2.CMU-PIE人脸数据库(美国,卡耐基梅隆大学)http://www.datatang.com/data/11957

CUM_PIE 人脸数据库  (点击文字可以直接下载)
 所谓 PIE 就是姿态( pose ),光照( Illumination )和表情( Expression )的缩写。包含68位志愿者的41,368张多姿态,光照和表情的面部图像.其中的姿态和光照变化图像也是在严格控制的条件下采集的,目前已经逐渐成为人脸识别领域的一个重要的测试集合

其中包括了每个人的 13 种姿态条件, 43 种光照条件和 4 种表情下的照片,现有的多姿态人脸识别的文献基本上都是在 CMU PIE 人脸库上测试的。



3.YALE人脸数据库(美国,耶鲁大学) http://cvc.yale.edu/projects/yalefaces/yalefaces.html
  由耶鲁大学计算视觉与控制中心创建,包含15位志愿者的165张图片,包含光照,表情和姿态的变化。

Yale人脸数据库中一个采集志愿者的10张样本,相比较ORL人脸数据库Yale库中每个对象采集的样本包含更明显的光照、表情和姿态以及遮挡变化。


4. YALE人脸数据库B - http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
包含了10个人的5,850幅多姿态,多光照的图像.其中的姿态和光照变化的图像都是在严格控制的条件下采集的,主要用于光照和姿态问题的建模与分析.由于采集人数较少,该数据库的进一步应用受到了比较大的限制。

5. MIT人脸数据库 - http://www.datatang.com/data/3729
  由麻省理工大学媒体实验室创建,包含16位志愿者的2,592张不同姿态(每人27张照片),光照和大小的面部图像.

6. ORL人脸数据库(英国,剑桥大学) - http://www.datatang.com/data/13501
英国剑桥大学AT&T实验室创建,包含40人共400张面部图像,部分志愿者的图像包括了姿态,表情和面部饰物的变化.该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大

ORL人脸数据库中一个采集对象的全部样本库中每个采集对象包含10幅经过归一化处理的灰度图像,图像尺寸均为92×112,图像背景为黑色。其中采集对象的面部表情和细节均有变化,例如笑与不笑、眼睛睁着或闭着以及戴或不戴眼镜等,不同人脸样本的姿态也有变化,其深度旋转和平面旋转可达20度。

7. BioID人脸数据库 - http://www.datatang.com/data/3045
   包含在各种光照和复杂背景下的1521张灰度面部图像,眼睛位置已经被手工标注。

 

8.UMIST 图像集(英国,曼切斯特大学): 20 个人共 564 幅图像,每个人具有不同角度、不同姿态的多幅图像。

 

9.Bern 图像集(德国,伯尔尼大学): 30 个人 300 幅正视图(每人 10 幅),150 幅侧视图(每人 50 幅)。

 

10.FDB603 (中国,南京理工大学): 96 人,每人约 10 幅图像,目前总图像为 954 幅,黑白照片,人脸在图像中所占比例较大,背景复杂,光照有自然光、室内白炽灯光,每张脸在上下、左右的范围内倾斜,年龄在 16~40 岁之间。

 

11.GT人脸库

 

12.AT&T 人脸库

阅读更多

扫码向博主提问

那年聪聪

非学,无以致疑;非问,无以广识
  • 擅长领域:
  • 自动驾驶
  • 图像处理
  • 深度学习
  • 机器学习
  • OpenCV
去开通我的Chat快问
版权声明:本文为@那年聪聪 原创文章,未经博主允许不得转载。 https://blog.csdn.net/duan19920101/article/details/50679061
文章标签: 人脸识别
个人分类: 人脸识别
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭