基于神经网络的人脸识别算法的优缺点

本文探讨了神经网络在人脸识别领域的应用优势及局限性。优点在于能够通过学习获得人脸图像规则的隐形表达,简化特征提取过程,有利于硬件实现。缺点包括算法解释性差、运算时间长、训练依赖大量样本及参数的人为调整,更适合小型人脸库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

优点:神经网络在人脸识别上的优势就是在于可以通过学习从而获得对于人脸图像规则隐形的一种表达,避免进行复杂的特征提取,有利于硬件的实现。

缺点:该算法不易解释,由于神经元的数目较多,运算时间较长,并且需要多张人脸图像进行训练,在训练过程中往往需要对一些参数进行人为的调整,所以适合范围被限制于小型人脸库。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值