Subsequence(常用技巧(尺取法))

题目来源:http://poj.org/problem?id=3061

【题意】给定长度为n的数列整数,以及整数s,求出总和不小于s的连续子序列的长度的最小值,如果解不存在,则输出0。

【思路1】求出其前缀和,for循环(确定了左边界)+二分搜索(为了确定右边界),算是暴力,复杂度为O(nlogn)。

【代码】

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<cmath>
#include<iostream>
#include<map>
#include<queue>
using namespace std;
typedef long long LL;
const double INF=1e9;
int n,s;
LL a[100000+10];
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&s);
        memset(a,0,sizeof(a));
        for(int i=0; i<n; i++)
        {
            scanf("%lld",&a[i+1]);
            a[i+1]+=a[i];
        }
        if(a[n]<s)
        {
            printf("0\n");
            continue;
        }
        int res=n;
        for(int i=0; a[i]+s<=a[n]; i++)
        {
            int f=lower_bound(a+i,a+n,a[i]+s)-a;
            res=min(res,f-i);
        }
        printf("%d\n",res);
    }
}

【思路2】 假设用a数组存下输入的数字,若存在s,使得以a[s]开始总和最初大于S时的连续子序列a[s]+...+a[t-1],这时a[s+1]+...+a[t-2]<a[s]+...+a[t-2]<S; 利用这个性质就可以设计如下算法:

(1)以s=t=sum=0初始化。

(2)只要依然有sum<S,就不断将sum增加a[t],并将t增加1。

(3)如果(2)中无法满足sum>=s则终止,否则的话,更新res=min(res,t-s)。对于这个算法,由于t最多变换n次,因此只需要O(n)的复杂度就可以求解这个问题了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<cmath>
#include<iostream>
#include<map>
#include<queue>
using namespace std;
typedef long long LL;
const double INF=1e9;

int a[100000+10];
int main()
{
    int T,n,S;
    scanf("%d",&T);
    while(T--)
    {
        memset(a,0,sizeof(a));
        scanf("%d%d",&n,&S);
        for(int i=0; i<n; i++)
            scanf("%d",&a[i]);
        int s=0,sum=0,t=0,res=n+1;
        for(;;)
        {
            while(t<n&&sum<S)
            {
                sum+=a[t++];
            }
            if(sum<S)
                break;
            res=min(res,t-s);
            sum-=a[s++];
        }
        if(res>n)
            res=0;
        printf("%d\n",res);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值