题目来源:http://poj.org/problem?id=3061
【题意】给定长度为n的数列整数,以及整数s,求出总和不小于s的连续子序列的长度的最小值,如果解不存在,则输出0。
【思路1】求出其前缀和,for循环(确定了左边界)+二分搜索(为了确定右边界),算是暴力,复杂度为O(nlogn)。
【代码】
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<cmath>
#include<iostream>
#include<map>
#include<queue>
using namespace std;
typedef long long LL;
const double INF=1e9;
int n,s;
LL a[100000+10];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&s);
memset(a,0,sizeof(a));
for(int i=0; i<n; i++)
{
scanf("%lld",&a[i+1]);
a[i+1]+=a[i];
}
if(a[n]<s)
{
printf("0\n");
continue;
}
int res=n;
for(int i=0; a[i]+s<=a[n]; i++)
{
int f=lower_bound(a+i,a+n,a[i]+s)-a;
res=min(res,f-i);
}
printf("%d\n",res);
}
}
【思路2】 假设用a数组存下输入的数字,若存在s,使得以a[s]开始总和最初大于S时的连续子序列a[s]+...+a[t-1],这时a[s+1]+...+a[t-2]<a[s]+...+a[t-2]<S; 利用这个性质就可以设计如下算法:
(1)以s=t=sum=0初始化。
(2)只要依然有sum<S,就不断将sum增加a[t],并将t增加1。
(3)如果(2)中无法满足sum>=s则终止,否则的话,更新res=min(res,t-s)。对于这个算法,由于t最多变换n次,因此只需要O(n)的复杂度就可以求解这个问题了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<cmath>
#include<iostream>
#include<map>
#include<queue>
using namespace std;
typedef long long LL;
const double INF=1e9;
int a[100000+10];
int main()
{
int T,n,S;
scanf("%d",&T);
while(T--)
{
memset(a,0,sizeof(a));
scanf("%d%d",&n,&S);
for(int i=0; i<n; i++)
scanf("%d",&a[i]);
int s=0,sum=0,t=0,res=n+1;
for(;;)
{
while(t<n&&sum<S)
{
sum+=a[t++];
}
if(sum<S)
break;
res=min(res,t-s);
sum-=a[s++];
}
if(res>n)
res=0;
printf("%d\n",res);
}
}