Beautiful People (最长单调递增子序列(变形))

题目来源:https://cn.vjudge.net/problem/ZOJ-2319
【题意】
有n个人,他们各自有两个数值a和b,放在两个数组a,b里,保证 a[i] < a[j], b[i] < b[j] (i < j)。输出序列中最多的人数以及他们的序号。
【思路】
最长单调递增子序列。对其中任一数组排序,对另外一数组进行dp,找最长单调递增子序列,但是,假设k是最大长度,dp【k】保存的是当长度为k时的最小数,比如序列 5 3 7 4,那么dp[1]=3,而不是5,dp[2]=4,而不是7。所以dp这个数组存的并不是单调递增子序列,只是求出了最大长度,所以这个时候,我们可以再开一个mark数组,在dp的for循环里,mark值记录的是以他们为终点的子序列长度,最后倒着输出就可以了。假设按照si值进行排序,如果排完序之后bi是这样的(假设n值为7) 1 9 10 5 11 2 13(这组样例只是为了解释为什么mark数组可以成功的把他们标记,以下为模拟情况):
mark[i]=j:代表原数组以第i项为终点的子序列长度。
for循环从1到n,设k指带当前最大长度,j代表在dp数组里找的位置,那么输入1时,dp为空,所以j=1,dp[1]=1,且mark[1]=1;输入9时,经过二分,j=2,mark[2]=2;输入10,j=3,dp[3]=3,mark[3]=3;输入5,j=2,dp[2]=5(因为5比9小),mark[4]=2,输入11,j=4,dp[4]=11,mark[5]=4;输入2时,j=2,dp[2]=2,mark[6]=2;输入13时,j=5,dp[5]=13,mark[7]=5。
模拟完了,最后的mark数组里与i的值是这样对应的:
i 1 2 3 4 5 6 7
mark[i] 1 2 3 2 4 2 5 .
结束。
【代码】

#include <cstdio>
#include <cstring>
#include <string>
#include <cstdlib>
#include <algorithm>
using namespace std;
const int N=100005;
const int INF=0x3f3f3f3f;
struct node
{
    int a,b;
    int num;
    friend bool operator<(const node&p1,const node&p2)
    {
        if (p1.a==p2.a)
            return p1.b>p2.b;
        return p1.a<p2.a;
    }
}pp[N];
int dp[N],mark[N];
int main()
{
    int t,n;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
        {
            scanf("%d%d",&pp[i].a,&pp[i].b);
            pp[i].num=i;
        }
        sort(pp+1,pp+n+1);
        memset(dp,INF,sizeof(dp));
        int k=0;
        for(int i=1; i<=n; i++)
        {
            int j=lower_bound(dp+1,dp+1+n,pp[i].b)-dp;
            dp[j]=pp[i].b;
            mark[i]=j;
            k=max(k,j);
        }
        printf("%d\n",k);
        for(int i=n; i>=1; i--)
        {
            if (mark[i]==k)
            {
                printf("%d ",pp[i].num);
                k--;
            }
        }
        printf("\n");
        if(t!=0)
            printf("\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值