ECCV2018目标检测(object detection)算法总览

 

转自大神翻译的文章,详细请转看

https://blog.csdn.net/u014380165/article/details/82025720

 

这篇博客记录我个人比较感兴趣的ECCV2018关于目标检测(object detection)的一些文章。

1、IOU-Net
论文:Acquisition of Localization Confidence for Accurate Object Detection
论文链接:https://arxiv.org/abs/1807.11590
详细博客介绍:IOU-Net 算法笔记

这篇ECCV2018的文章个人非常喜欢,我们知道在目标检测算法中最后一般都会通过NMS算法移除重复预测框,移除的依据是预测框的分类得分(classification confidence,也就是softmax层的概率输出),但是这种依据并不能很好地表征预测框的准确性,换句话说对于同一个ground truth而言,分类得分高的预测框并不一定比分类得分低的预测框好,这样就容易导致那些分类得分低,但是坐标和ground truth更接近,也就是坐标回归更准确的预测框在NMS阶段被过滤掉,导致最终指标的下降。因此这篇文章就提出IOU-Net,通过预测检测框和ground truth的IOU来解决这2个问题:1、提出IOU-guided NMS,也就是在NMS阶段引入回归得分(localization confidence)作为排序指标而不是采用传统的分类得分。2、提出optimization-based bbox refinement替换传统的regression-based方法,提高了回归部分的可解释性。另外这篇文章还提出了Precise ROI Pooling(PrROI Pooling),通过积分方式计算ROI特征使得前向计算的误差进一步降低,同时反向传播时基于连续输入值计算梯度使得反向传播连续可导,相比之下ROI Pooling和ROI Align由于采用量化或几个点插值方式求ROI特征,不可避免地带来一些噪声,而且在反向求导时只对特定输入回传梯度。

Figure1是关于这篇文章出发点的介绍。
这里写图片描述

2、DetNet
论文:DetNet: A Backbone network for Object
链接:https://arxiv.org/abs/1804.06215
详细博客介绍:DetNet 算法笔记

这篇ECCV2018关于目标检测的文章,主要是对检测算法的特征提取网络(backbone)做优化。我们知道目前大部分的目标检测算法在训练时都会用预训练的分类模型来提取特征,这些预训练模型是在ImageNet数据集上训练得到的,众多的实验也证明了这种做法的有效性。而DetNet这篇文章相当于研究更加有效的特征提取网络,出发点也非常直接,主要包含两点:1、分类任务和检测任务还是有一定差别的,因此用分类数据上训练的分类模型来提取特征用于检测任务不一定合适,比如检测任务比较关注目标的尺度特征,但是分类任务就不一定了。2、检测任务不仅仅要做目标的分类,而且要做目标的定位,这样的差异容易导致一些问题,比如在分类网络中常用的降采样操作可能对分类有效,因为增大了感受野,但是对于需要定位目标的检测任务而言就不一定有利,因为丢失了目标的位置信息。因此DetNet的提出主要也是针对这两个出发点,换句话说是设计了一个专门用于目标检测算法的特征提取网络,主要改进点包括:1、增加网络高层输出特征的分辨率,换句话说就是高层不对特征图做尺寸缩减。2、引入dilated卷积层增加网络高层的感受野,这是因为第一个改进点引起的感受野减小。3、减小网络高层的宽度,减少因增大分辨率带来的计算量。

Figure1是第1个改进点。
这里写图片描述

Figure2是关于第2、3个改进点。
这里写图片描述

3、RFB Net
论文:Receptive Field Block Net for Accurate and Fast Object Detection
论文链接:https://arxiv.org/abs/1711.07767
代码链接:https://github.com/ruinmessi/RFBNet
详细博客介绍:RFB Net算法笔记

这篇是ECCV2018关于目标检测的文章,提出了RFB Net网络用于目标检测,可以在兼顾速度的同时达到良好的效果。该网络主要在SSD网络中引入Receptive Field Block (RFB) ,引入RFB的出发点通过模拟人类视觉的感受野加强网络的特征提取能力,在结构上RFB借鉴了Inception的思想,主要是在Inception的基础上加入了dilated卷积层(dilated convolution),从而有效增大了感受野(receptive field)。整体上因为是基于SSD网络进行改进,所以检测速度还是比较快,同时精度也有一定的保证。

RFB结构如Figure4所示。
这里写图片描述

RFB Net结构如Figure5所示。
这里写图片描述

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值