特别感谢实验室小雷同学汇总此篇,日后学习目标跟踪可以有个好的方向好的借鉴,哪怕是比赛的时候选模型都可以参考一下。
----------------------------------------------------------
论文对应序号
method
dataset
code
VOC2007
VOC2012
COCO
1
Cascade R-CNN
42.8(AP)
有
2
Relation Net
39.0(加到别的方法上)
有
3
RefineDet
85.8
86.8
41.8(AP)
有
4
SNIP
有
5
R-FCN-3000
43.3(ImageNet)
无
6
DES
84.3
83.7
32.8
无
7
STDN
80.9
31.8
有
8
W2F
52.4
47.8
无
9
无简写
51.2
无
10
MELM
47.3
42.4
有
11
SSM
62.9
有
12
无简写
82.9
35.6(AP)
有
13
PAD
80.7
79.5
无
14
ZLDN
47.6
42.9
无
15
无简写
39.5
无
16
MegDet
52.5(mmAP)
无
17
drl-RPN
76.4
72.2
有
18
SIN
76.0
73.1
23.2(AP)
有
19
SOD-MTGAN
41.4(AP)
无
20
ML-LocNet
49.7
43.6
16.2(COCO2014)
无
21
DetNet
40.3
有
22
无简写
50.4
69.3
无
23
无简写
25.4
22.9
无
24
无简写
82.4
81.1
34.6(AP)
无
25
RFB-NET
82.2
29.7(COCO2014)
34.4(COCO2015)
有
26
PFP-NET
84.1
83.7
41.8
有
27
TS2C
44.3
40.0
无
28
SAN
82.8
43.4
无
29
无简写
81.2
mmAP:39.3(COCO2017)
无
30
无简写
42.0(AP)
无
附:
(1)论文对应序号中,序号1-18篇收录于CVPR,19-30收录于ECCV。
(2)在经典数据库的检测精度取在论文中实现的最高精度,不考虑base network。
(3)method列仅写出算法简称。
(4)针对COCO数据集的检测结果不可进行统一比较。有的是在COCO2014、COCO2015或者是COCO2017上测试,评价指标稍有不同。
(5)CVPR2019论文未公布。
======以下排名仅对论文中有在对应数据集测试的算法进行排序=========
VOC2007数据集排名
论文对应序号
method
mAP
排名
3
RefineDet
85.8
1
6
DES
84.3
2
26
PFP-NET
84.1
3
12
无简写
82.9
4
28
SAN
82.8
5
24
无简写
82.4
6
25
RFB-NET
82.2
7
7
STDN
80.9
8
13
PAD
80.7
9
17
drl-RPN
76.4
10
18
SIN
76.0
11
11
SSM
62.9
12
8
W2F
52.4
13
9
无简写
51.2
14
22
无简写
50.4
15
20
ML-LocNet
49.7
16
14
ZLDN
47.6
17
10
MELM
47.3
18
27
TS2C
44.3
19
23
无简写
25.4
20
VOC2012数据集排名
论文对应序号
method
mAP
排名
3
RefineDet
86.8
1
6
DES
83.7
2
26
PFP-NET
83.7
2
29
无简写
81.2
3
24
无简写
81.1
4
13
PAD
79.5
5
18
SIN
73.1
6
17
drl-RPN
72.2
7
22
无简写
69.3
8
8
W2F
47.8
9
20
ML-LocNet
43.6
10
14
ZLDN
42.9
11
10
MELM
42.4
12
27
TS2C
40.0
13
23
无简写
22.9
14
22
无简写
50.4
15
20
ML-LocNet
49.7
16
14
ZLDN
47.6
17
10
MELM
47.3
18
27
TS2C
44.3
19
23
无简写
25.4
20
COCO数据集排名
论文对应序号
method
mAP
排名
16
MegDet
52.5(mmAP)
1
28
SAN
43.4
2
1
Cascade R-CNN
42.8(AP)
3
30
无简写
42.0(AP)
4
26
PFP-NET
41.8
5
3
RefineDet
41.8(AP)
6
19
SOD-MTGAN
41.4(AP)
7
21
DetNet
40.3
8
15
无简写
39.5
9
29
无简写
mmAP:39.3(COCO2017)
10
2
Relation Net
39.0(加到别的方法上)
11
12
无简写
35.6(AP)
12
24
无简写
34.6(AP)
13
25
RFB-NET
29.7(COCO2014)
34.4(COCO2015)
14
6
DES
32.8
15
7
STDN
31.8
16
18
SIN
23.2(AP)
17
20
ML-LocNet
16.2(COCO2014)
18
1、Cascaded RCNN
论文
Cascade R-CNN : Delving into High Quality Object Detection
论文链接
https://arxiv.org/abs/1712.00726
代码链接
https://github.com/zhaoweicai/cascade-rcnn
实验结果
2、Relation Net
论文
Relation Networks for Object Detection
论文链接
https://arxiv.org/abs/1711.11575
代码链接
https://github.com/msracver/Relation-Networks-for-Object-Detection
实验结果
(实验是针对two stage系列的目标检测算法而言,在ROI Pooling后的两个全连接层和NMS模块引入object relation module,如Figure1所示,因此做到了完整的end-to-end训练。)
3、RefineDet
论文
Single-Shot Refinement Neural Network for Object Detection
论文链接
https://arxiv.org/abs/1711.06897
代码链接
https://github.com/sfzhang15/RefineDet
实验结果
4、SNIP
论文
An Analysis of Scale Invariance in Object Detection – SNIP
论文链接
https://arxiv.org/abs/1711.08189
代码链接
http://bit.ly/2yXVg4c(打不开)
实验结果
5、R-FCN-3000
论文
R-FCN-3000 at 30fps: Decoupling Detection and Classification
论文链接
https://arxiv.org/abs/1712.01802
代码链接
ImageNet实验结果
6、DES
论文
Single-Shot Object Detection with Enriched Semantics
论文链接
https://arxiv.org/abs/1712.00433
代码链接
实验结果
7、STDN
论文
Scale-Transferrable Object Detection
论文链接
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Scale-Transferrable_Object_Detection_CVPR_2018_paper.pdf
代码链接
https://github.com/arvention/STDN
实验结果
8、W2F
论文
W2F: A Weakly-Supervised to Fully-Supervised Framework for Object Detection
论文链接
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_W2F_A_Weakly-Supervised_CVPR_2018_paper.pd
代码链接
实验结果
9、
论文
Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning
论文链接
http://openaccess.thecvf.com/content_cvpr_2018/papers/Ge_Multi-Evidence_Filtering_and_CVPR_2018_paper.pdf
代码链接
实验结果
10、MELM
论文
Min-Entropy Latent Model for Weakly Supervised Object Detection
论文链接
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wan_Min-Entropy_Latent_Model_CVPR_2018_paper.pdf
代码链接
https://github.com/Winfrand/MELM
实验结果
11、SSM
论文
Towards Human-Machine Cooperation: Self-supervised Sample Mining for Object Detection
论文链接
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Towards_Human-Machine_Cooperation_CVPR_2018_paper.pdf
代码链接
https://github.com/yanxp/SSM-Pytorch
实验结果
12、
论文
Feature Selective Networks for Object Detection
论文链接
https://arxiv.org/abs/1711.08879
代码链接
https://github.com/robwec/feature-selective-networks
实验结果
13、PAD
论文
Pseudo Mask Augmented Object Detection
论文链接
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhao_Pseudo_Mask_Augmented_CVPR_2018_paper.pdf
代码链接
实验结果
14、ZLDN
论文
Zigzag Learning for Weakly Supervised Object Detection
论文链接
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Zigzag_Learning_for_CVPR_2018_paper.pdf
代码链接
实验结果
15、
论文
Learning Globally Optimized Object Detector via Policy Gradient
论文链接
http://openaccess.thecvf.com/content_cvpr_2018/papers/Rao_Learning_Globally_Optimized_CVPR_2018_paper.pdf
代码链接
实验结果
16、MegDet
论文
MegDet: A Large Mini-Batch Object Detector
论文链接
http://openaccess.thecvf.com/content_cvpr_2018/papers/Peng_MegDet_A_Large_CVPR_2018_paper.pdf
代码链接
实验结果
The MegDet is the backbone of our submission (mmAP 52.5%) to COCO 2017 Challenge, wherewe won the1st placeof Detection task.
17、drl-RPN
论文
Deep Reinforcement Learning of Region Proposal Networks for Object Detection
论文链接
http://openaccess.thecvf.com/content_cvpr_2018/papers/Pirinen_Deep_Reinforcement_Learning_CVPR_2018_paper.pdf
代码链接
https://github.com/aleksispi/drl-rpn-tf
实验结果
18、SIN
论文
Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships
论文链接
http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Structure_Inference_Net_CVPR_2018_paper.pdf
代码链接
https://github.com/choasup/SIN
实验结果
以下是ECCV2018论文
19、SOD-MTGAN
论文:SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Yongqiang_Zhang_SOD-MTGAN_Small_Object_ECCV_2018_paper.pdf
代码链接:
实验结果
20、ML-LocNet
论文:ML-LocNet: Improving Object Localization with Multi-view Learning Network
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Xiaopeng_Zhang_ML-LocNet_Improving_Object_ECCV_2018_paper.pdf
代码链接:
实验结果
21、DetNet
论文:DetNet: Design Backbone for Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Zeming_Li_DetNet_Design_Backbone_ECCV_2018_paper.pdf
实验结果
22、
论文:Weakly Supervised Region Proposal Network and Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Peng_Tang_Weakly_Supervised_Region_ECCV_2018_paper.pdf
代码链接:
实验结果
23、
论文:Zero-Annotation Object Detection with Web Knowledge Transfer
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Qingyi_Tao_Zero-Annotation_Object_Detection_ECCV_2018_paper.pdf
代码链接:
实验结果
24、
论文:Deep Feature Pyramid Reconfiguration for Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Tao_Kong_Deep_Feature_Pyramid_ECCV_2018_paper.pdf
代码链接:
实验结果
25、RFB-NET
论文:Receptive Field Block Net for Accurate and Fast Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Songtao_Liu_Receptive_Field_Block_ECCV_2018_paper.pdf
实验结果
26、PFP-NET
论文:Parallel Feature Pyramid Network for Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Seung-Wook_Kim_Parallel_Feature_Pyramid_ECCV_2018_paper.pdf
代码链接:
实验结果
27、TS2C
论文:TS2C: Tight Box Mining with Surrounding Segmentation Context for Weakly Supervised Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Yunchao_Wei_TS2C_Tight_Box_ECCV_2018_paper.pdf
代码链接:
实验结果
28、SAN
论文:
SAN: Learning Relationship between Convolutional Features for Multi-Scale Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Kim_SAN_Learning_Relationship_ECCV_2018_paper.pdf
代码链接:
实验结果
29、
论文:Deep Regionlets for Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Hongyu_Xu_Deep_Regionlets_for_ECCV_2018_paper.pdf
代码链接:
实验结果
30、
论文:Context Refinement for Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Zhe_Chen_Context_Refinement_for_ECCV_2018_paper.pdf
代码链接:
实验结果