cvpr2019 目标检测算法_CVPR2018+ECCV2018目标检测算法汇总

特别感谢实验室小雷同学汇总此篇,日后学习目标跟踪可以有个好的方向好的借鉴,哪怕是比赛的时候选模型都可以参考一下。

----------------------------------------------------------

论文对应序号

method

dataset

code

VOC2007

VOC2012

COCO

1

Cascade R-CNN

42.8(AP)

2

Relation Net

39.0(加到别的方法上)

3

RefineDet

85.8

86.8

41.8(AP)

4

SNIP

5

R-FCN-3000

43.3(ImageNet)

6

DES

84.3

83.7

32.8

7

STDN

80.9

31.8

8

W2F

52.4

47.8

9

无简写

51.2

10

MELM

47.3

42.4

11

SSM

62.9

12

无简写

82.9

35.6(AP)

13

PAD

80.7

79.5

14

ZLDN

47.6

42.9

15

无简写

39.5

16

MegDet

52.5(mmAP)

17

drl-RPN

76.4

72.2

18

SIN

76.0

73.1

23.2(AP)

19

SOD-MTGAN

41.4(AP)

20

ML-LocNet

49.7

43.6

16.2(COCO2014)

21

DetNet

40.3

22

无简写

50.4

69.3

23

无简写

25.4

22.9

24

无简写

82.4

81.1

34.6(AP)

25

RFB-NET

82.2

29.7(COCO2014)

34.4(COCO2015)

26

PFP-NET

84.1

83.7

41.8

27

TS2C

44.3

40.0

28

SAN

82.8

43.4

29

无简写

81.2

mmAP:39.3(COCO2017)

30

无简写

42.0(AP)

附:

(1)论文对应序号中,序号1-18篇收录于CVPR,19-30收录于ECCV。

(2)在经典数据库的检测精度取在论文中实现的最高精度,不考虑base network。

(3)method列仅写出算法简称。

(4)针对COCO数据集的检测结果不可进行统一比较。有的是在COCO2014、COCO2015或者是COCO2017上测试,评价指标稍有不同。

(5)CVPR2019论文未公布。

======以下排名仅对论文中有在对应数据集测试的算法进行排序=========

VOC2007数据集排名

论文对应序号

method

mAP

排名

3

RefineDet

85.8

1

6

DES

84.3

2

26

PFP-NET

84.1

3

12

无简写

82.9

4

28

SAN

82.8

5

24

无简写

82.4

6

25

RFB-NET

82.2

7

7

STDN

80.9

8

13

PAD

80.7

9

17

drl-RPN

76.4

10

18

SIN

76.0

11

11

SSM

62.9

12

8

W2F

52.4

13

9

无简写

51.2

14

22

无简写

50.4

15

20

ML-LocNet

49.7

16

14

ZLDN

47.6

17

10

MELM

47.3

18

27

TS2C

44.3

19

23

无简写

25.4

20

VOC2012数据集排名

论文对应序号

method

mAP

排名

3

RefineDet

86.8

1

6

DES

83.7

2

26

PFP-NET

83.7

2

29

无简写

81.2

3

24

无简写

81.1

4

13

PAD

79.5

5

18

SIN

73.1

6

17

drl-RPN

72.2

7

22

无简写

69.3

8

8

W2F

47.8

9

20

ML-LocNet

43.6

10

14

ZLDN

42.9

11

10

MELM

42.4

12

27

TS2C

40.0

13

23

无简写

22.9

14

22

无简写

50.4

15

20

ML-LocNet

49.7

16

14

ZLDN

47.6

17

10

MELM

47.3

18

27

TS2C

44.3

19

23

无简写

25.4

20

COCO数据集排名

论文对应序号

method

mAP

排名

16

MegDet

52.5(mmAP)

1

28

SAN

43.4

2

1

Cascade R-CNN

42.8(AP)

3

30

无简写

42.0(AP)

4

26

PFP-NET

41.8

5

3

RefineDet

41.8(AP)

6

19

SOD-MTGAN

41.4(AP)

7

21

DetNet

40.3

8

15

无简写

39.5

9

29

无简写

mmAP:39.3(COCO2017)

10

2

Relation Net

39.0(加到别的方法上)

11

12

无简写

35.6(AP)

12

24

无简写

34.6(AP)

13

25

RFB-NET

29.7(COCO2014)

34.4(COCO2015)

14

6

DES

32.8

15

7

STDN

31.8

16

18

SIN

23.2(AP)

17

20

ML-LocNet

16.2(COCO2014)

18

1、Cascaded RCNN

论文

Cascade R-CNN : Delving into High Quality Object Detection

论文链接

https://arxiv.org/abs/1712.00726

代码链接

https://github.com/zhaoweicai/cascade-rcnn

实验结果

2、Relation Net

论文

Relation Networks for Object Detection

论文链接

https://arxiv.org/abs/1711.11575

代码链接

https://github.com/msracver/Relation-Networks-for-Object-Detection

实验结果

(实验是针对two stage系列的目标检测算法而言,在ROI Pooling后的两个全连接层和NMS模块引入object relation module,如Figure1所示,因此做到了完整的end-to-end训练。)

3、RefineDet

论文

Single-Shot Refinement Neural Network for Object Detection

论文链接

https://arxiv.org/abs/1711.06897

代码链接

https://github.com/sfzhang15/RefineDet

实验结果

4、SNIP

论文

An Analysis of Scale Invariance in Object Detection – SNIP

论文链接

https://arxiv.org/abs/1711.08189

代码链接

http://bit.ly/2yXVg4c(打不开)

实验结果

5、R-FCN-3000

论文

R-FCN-3000 at 30fps: Decoupling Detection and Classification

论文链接

https://arxiv.org/abs/1712.01802

代码链接

ImageNet实验结果

6、DES

论文

Single-Shot Object Detection with Enriched Semantics

论文链接

https://arxiv.org/abs/1712.00433

代码链接

实验结果

7、STDN

论文

Scale-Transferrable Object Detection

论文链接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Scale-Transferrable_Object_Detection_CVPR_2018_paper.pdf

代码链接

https://github.com/arvention/STDN

实验结果

8、W2F

论文

W2F: A Weakly-Supervised to Fully-Supervised Framework for Object Detection

论文链接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_W2F_A_Weakly-Supervised_CVPR_2018_paper.pd

代码链接

实验结果

9、

论文

Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning

论文链接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Ge_Multi-Evidence_Filtering_and_CVPR_2018_paper.pdf

代码链接

实验结果

10、MELM

论文

Min-Entropy Latent Model for Weakly Supervised Object Detection

论文链接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Wan_Min-Entropy_Latent_Model_CVPR_2018_paper.pdf

代码链接

https://github.com/Winfrand/MELM

实验结果

11、SSM

论文

Towards Human-Machine Cooperation: Self-supervised Sample Mining for Object Detection

论文链接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Towards_Human-Machine_Cooperation_CVPR_2018_paper.pdf

代码链接

https://github.com/yanxp/SSM-Pytorch

实验结果

12、

论文

Feature Selective Networks for Object Detection

论文链接

https://arxiv.org/abs/1711.08879

代码链接

https://github.com/robwec/feature-selective-networks

实验结果

13、PAD

论文

Pseudo Mask Augmented Object Detection

论文链接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhao_Pseudo_Mask_Augmented_CVPR_2018_paper.pdf

代码链接

实验结果

14、ZLDN

论文

Zigzag Learning for Weakly Supervised Object Detection

论文链接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Zigzag_Learning_for_CVPR_2018_paper.pdf

代码链接

实验结果

15、

论文

Learning Globally Optimized Object Detector via Policy Gradient

论文链接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Rao_Learning_Globally_Optimized_CVPR_2018_paper.pdf

代码链接

实验结果

16、MegDet

论文

MegDet: A Large Mini-Batch Object Detector

论文链接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Peng_MegDet_A_Large_CVPR_2018_paper.pdf

代码链接

实验结果

The MegDet is the backbone of our submission (mmAP 52.5%) to COCO 2017 Challenge, wherewe won the1st placeof Detection task.

17、drl-RPN

论文

Deep Reinforcement Learning of Region Proposal Networks for Object Detection

论文链接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Pirinen_Deep_Reinforcement_Learning_CVPR_2018_paper.pdf

代码链接

https://github.com/aleksispi/drl-rpn-tf

实验结果

18、SIN

论文

Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships

论文链接

http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Structure_Inference_Net_CVPR_2018_paper.pdf

代码链接

https://github.com/choasup/SIN

实验结果

以下是ECCV2018论文

19、SOD-MTGAN

论文:SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network

论文链接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Yongqiang_Zhang_SOD-MTGAN_Small_Object_ECCV_2018_paper.pdf

代码链接:

实验结果

20、ML-LocNet

论文:ML-LocNet: Improving Object Localization with Multi-view Learning Network

论文链接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Xiaopeng_Zhang_ML-LocNet_Improving_Object_ECCV_2018_paper.pdf

代码链接:

实验结果

21、DetNet

论文:DetNet: Design Backbone for Object Detection

论文链接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Zeming_Li_DetNet_Design_Backbone_ECCV_2018_paper.pdf

实验结果

22、

论文:Weakly Supervised Region Proposal Network and Object Detection

论文链接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Peng_Tang_Weakly_Supervised_Region_ECCV_2018_paper.pdf

代码链接:

实验结果

23、

论文:Zero-Annotation Object Detection with Web Knowledge Transfer

论文链接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Qingyi_Tao_Zero-Annotation_Object_Detection_ECCV_2018_paper.pdf

代码链接:

实验结果

24、

论文:Deep Feature Pyramid Reconfiguration for Object Detection

论文链接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Tao_Kong_Deep_Feature_Pyramid_ECCV_2018_paper.pdf

代码链接:

实验结果

25、RFB-NET

论文:Receptive Field Block Net for Accurate and Fast Object Detection

论文链接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Songtao_Liu_Receptive_Field_Block_ECCV_2018_paper.pdf

实验结果

26、PFP-NET

论文:Parallel Feature Pyramid Network for Object Detection

论文链接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Seung-Wook_Kim_Parallel_Feature_Pyramid_ECCV_2018_paper.pdf

代码链接:

实验结果

27、TS2C

论文:TS2C: Tight Box Mining with Surrounding Segmentation Context for Weakly Supervised Object Detection

论文链接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Yunchao_Wei_TS2C_Tight_Box_ECCV_2018_paper.pdf

代码链接:

实验结果

28、SAN

论文:

SAN: Learning Relationship between Convolutional Features for Multi-Scale Object Detection

论文链接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Kim_SAN_Learning_Relationship_ECCV_2018_paper.pdf

代码链接:

实验结果

29、

论文:Deep Regionlets for Object Detection

论文链接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Hongyu_Xu_Deep_Regionlets_for_ECCV_2018_paper.pdf

代码链接:

实验结果

30、

论文:Context Refinement for Object Detection

论文链接:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Zhe_Chen_Context_Refinement_for_ECCV_2018_paper.pdf

代码链接:

实验结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值