【论文阅读】Multi-layer multi-level comprehensive learning for deep multi-view clustering

论文地址:Multi-layer multi-level comprehensive learning for deep multi-view clustering - ScienceDirect


摘要

多视图聚类因其能够识别从不同视角捕获的数据、对象或现象中共享的共性语义,而受到广泛关注。这是一个具有挑战性的问题,但随着深度自动编码器网络的出现,多视图聚类方法的性能得到了显著提升。然而,需要注意的是,大多数现有方法仅利用最后一层编码器输出的特征来执行聚类任务。这种方法忽略了前几层特征所传递的潜在有用信息。为了解决这一问题,作者提出了一种新颖的深度多视图聚类多层多级综合学习框架(3MC)。3MC首先基于每一层编码器中的深度特征分别进行不同视图之间的对比学习,从而实现多视图特征的一致性。接下来,构建层特定的标签多层感知机(MLPs),将每一层中的特征转换为高级语义标签。最后,3MC基于高级语义标签进行跨层对比学习,以获得多层一致的聚类分配。作者证明了所提出的综合学习策略,从层特定的跨视图特征比较到跨层的高级标签比较,能够非常成功地提取并利用底层的多视图互补信息,从而实现更准确的聚类。与最先进方法的大量实验对比表明,该框架的有效性得到了充分验证。

引言

在现实世界中,数据通常来自不同领域或通过不同的特征提取器收集。例如,同一张图像可以通过多种特征提取器表示,或者同一则新闻可能由多家新闻机构报道。前者通常称为多特征数据,后者称为多模态数据,但从广义角度来看,这两类数据都可被称为多视图数据。与单视图数据相比,多视图数据通常提供更丰富的信息,因此可以更全面地描述不同的对象。多视图数据的存在激发了研究者对多视图学习的兴趣,其中最典型的研究方向是多视图聚类(MvC)。

现有文献中,MvC方法大致可分为两类:非深度方法和深度方法。非深度MvC方法使用传统的机器学习框架完成聚类任务,进一步可以分为四个子类:

  1. 自表示学习方法 [6-8]:通过对学习到的相似性矩阵执行谱聚类或K-means聚类以获得聚类结果。
  2. 字典学习方法 [9-12]:从原始数据中学习稠密且干净的字典或锚点以生成低维数据表示。
  3. 矩阵分解方法 [13-15]:将输入数据分解为非负表示矩阵和非负基矩阵。
  4. 图学习方法<
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值