全文共2485字,预计学习时长12分钟
图源:unsplash
数据科学的生命周期主要包括数据收集、数据清理、探索性数据分析、模型构建和模型部署。作为数据科学家或机器学习工程师,能够部署数据科学项目非常重要,这有助于完成数据科学生命周期。通过既有框架(如Django或Flask)对传统机器学习模型进行部署,可能是一项艰巨耗时的任务。
本文就将展示如何在Python库中使用streamlit,用不到50行的代码构建一个简单的基于机器学习的数据科学web应用程序。
数据科学生命周期
鸢尾花预测应用程序概述
我们将构建一个简单的机器学习web应用程序,用于预测鸢尾花的类标签,包括setosa、versicolor和virginica。这需要用到三个Python库,即streamlit、pandas和scikitlearn。
应用程序的概念流程主要由两个部分组成:前端和后端。
图源:unsplash
在前端,左侧栏将接受与鸢尾花特征(如花瓣长度、花瓣宽度、萼片长度和萼片宽度)相关的输入参数。这些特性会被传送到后端,后端的训练模型将预测类标签作为输入参数的函数,预测结果再发回前端显示。
在后端,用户输入的参数将被保存到一个数据帧中作为测试数据。同时,利用scikit-learn库中的随机森林算法建立分类模型。最后,将该模型应用于预测用户输入的数据,并将预测的类标签返回到三种花卉类型:setosa、versicolor或virginica。此外,该模型还能够预测概率,从而辨别预测类标签的相对可信度。
安装必备库
本教程使用到的三个Python库——str