在Ubuntu16.04中配置Anaconda(Python2.7)以支持Spark2.0(Pyspark)

本文主要内容:

  • 对比Spark和Hadoop
  • 介绍PysPark和Anaconda
  • 搭建并配置
  • 运行WordCount

最近想学习大数据分析平台Spark,由于实验室设备不足,只能先在本地搭建一个独立式的Spark环境,进行简单分析,逐步探索Spark的奥秘,为以后Spark集群操作打好基础。
对于从事数据挖掘和机器学习人员来说,使用anaconda的ipython notebook无疑是最棒的体验。那么,如何在ipython notebook中使用spark呢?

Spark和Hadoop

  • 大数据框架

    • Hadoop是对大数据集进行分布式计算的标准工具。提供了包括工具和技巧在内的丰富的生态系统,允许使用相对便宜的商业硬件集群进行超级计算机级别的计算。主要核心:HDFS和MapReduce;
    • Spark使用函数式编程范式扩展了MapReduce编程模型以支持更多计算类型,可以涵盖广泛的工作流。
    • Spark据称要比Hadoop快100倍,但它本身没有一个分布式存储系统;
    • Spark需要一个第三方的分布式存储系统;
    • 结合Spark和Hadoop,将Spark安装在Hadoop之上,使得Spark可以使用存储在HDFS中的数据。
  • 速度

    • Spark基于内存:Spark使用内存缓存来提升性能,因此进行交互式分析也足够快速(就如同使用Python解释器,与集群进行交互一样)。缓存同时提升了迭代算法的性能,这使得Spark非常适合数据理论任务,特别是机器学习。
    • Hadoop基于磁盘:MapReduce要求每隔步骤之间的数据要序列化到磁盘,这意味着MapReduce作业的I/O成本很高,导致交互分析和迭代算法(iterative algorithms)开销很大。而事实是,几乎所有的最优化和机器学习都是迭代的。
  • 高级数据处理(实时流处理、机器学习)

    • Spark胜过Hadoop——受欢迎原因;
    • Spark平台的速度和流数据处理能力非常适合机器学习算法;
    • Spark有自己的机器学习库MLlib,而Hadoop系统则需要借助第三方机器学习库,如Apache Mahout。

Spark库

Spark附带一些强大的库:

  • SparkSQL:提供SQL语句,进行结构化数据查询和大数据集的探索。每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作;
  • SparkMLLIB:提供主要机器学习算法和框架。这个库包含可扩展的学习算法,如分类、聚类、回归等需要对大量数据集进行迭代的操作;
  • Spark Streaming:提供实时处理;
  • Spark GraphX:提供图处理和计算。

由于这些库满足了很多大数据需求,也满足了很多数据科学任务的算法和计算上的需要,Spark快速流行起来。不仅如此,Spark也提供了使用Scala、Java和Python编写的API;满足了不同团体的需求,允许更多数据科学家简便地采用Spark作为他们的大数据解决方案。

PySpark

Spark是用Scala写的,整个Spark生态系统需要运行在JVM环境中,并且需要利用本地的HDFS。Hadoop的HDFS是Spark支持的数据存储之一。Spark可以处理不同类型的数据资源、种类、格式等。
PySpark提供了Spark集成的API,并允许在集群中的所有节点上使用Python的生态系统。更重要的是,它提供Python机器学习的库(如sklearn)和数据处理方法(pandas)。
PySpark的工作原理如下图:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值