Logistic回归

Logistic 回归

  • 优点:
    • 易于理解,计算量不大
  • 缺点
    • 容易欠拟合,精度不高
  • 适用数据类型:
    • 数值型、标称型

Sigmoid函数

Sigmoid函数:


这里写图片描述

Sigmoid函数的输入记为z,由下面公式得出:


这里写图片描述

式中,向量x为分类器的输入数据,向量w为最佳回归系数。

最佳回归系数的确定——梯度上升法

  • 思想:要找到某函数的最大值,最好的方法就是沿着该函数的梯度方向探寻。
  • 公式:梯度记为这里写图片描述,则函数f(x,y)的梯度(a = 这里写图片描述,b=这里写图片描述):


    这里写图片描述

  • 用向量来表示的话,梯度上升法的迭代公式(a为步长):


    这里写图片描述

  • 梯度下降法求函数的最小值;梯度上升法求函数的最大值 。

Logistic Python实现

#加载数据
def loadDataSet():
    data = []#存样本
    label = []#存标签
    with open('testSet.txt','r') as r_file:#打开数据文件
        for line in r_file:
            line = line.strip().split()#去空格,并切割
            data.append([1.0,float(line[0]),float(line[1])])#为方便计算,引入新列
            label.append(int(line[2]))
    return data,label

#sigmoid函数
def sigmoid(inx):
    return 1.0/(1+exp(-inx))

#梯度上升法
def gradAscent(data,label):
    data = mat(data)#转矩阵
    label = mat(label).transpose()#转矩阵,并转置
    m,n=shape(data)
    a = 0.001#设置步长
    maxCycles = 500#设置循环次数
    weights = ones((n,1))
    for i in xrange(maxCycles):
        h = sigmoid(data*weights)
        error = label - h
        weights = weights + a*data.transpose()*error
    return weights

#画决策边界
def plotBestFit(weights):
    import matplotlib.pyplot as plt#导入画图模块
    data,label=loadDataSet()
    dataArray = array(data)#转数组
    n = shape(dataArray)[0]#样本数
    x1=[];y1=[];x2=[];y2=[]
    for i in xrange(n):
        if int(label[i])==1:#正类
            x1.append(dataArray[i,1])
            y1.append(dataArray[i,2])
        else:#负类
            x2.append(dataArray[i,1])
            y2.append(dataArray[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(x1,y1,s=30,c='red',marker='s')
    ax.scatter(x2,y2,s=30,c='green')
    x = arange(-3.0, 3.0, 0.01)
    y = (-weights[0] - weights[1]*x)/weights[2]#最佳拟合直线
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

这里写图片描述

注意:函数gradAscent(data,label)计算得出的结果weights是矩阵,作为参数传入函数plotBestFit(weights)时,需要转化为数组。方法:

  • plotBestFit(weights.getA())
  • plotBestFit(array(weights))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值