Python分割训练集和测试集

数据集介绍

使用数据集Wine,来自UCI。包括178条样本,13个特征。

import pandas as pd
import numpy as np

df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None)
df_wine.columns = ['Class label', 'Alcohol',
                            'Malic acid', 'Ash',
                            'Alcalinity of ash', 'Magnesium',
                            'Total phenols', 'Flavanoids',
                            'Nonflavanoid phenols',
                            'Proanthocyanins',
                            'Color intensity', 'Hue',
                            'OD280/OD315 of diluted wines',
                            'Proline']

分割训练集和测试集

  • 随机分割
  • 分为训练集和测试集
  • 方法:使用scikit-learnmodel_selection子模块的train_test_split函数
from sklearn.model_selection import train_test_split

X, y = df_wine.ix[:, 1:].values, df_wine.ix[:, 0].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)#随机选择25%作为测试集,剩余作为训练集
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值