通俗理解决策树算法中的信息增益(最朴实的大白话,保准能看懂)

信息增益


在决策树算法的学习过程中, 信息增益是特征选择的一个重要指标,它定义为一个特征能够为分类系统带来多少信息,带来的信息越多,说明该 特征越重要相应的信息增益也就越大

概念

信息熵是代表随机变量的复杂度(不确定度)条件熵代表在某一个条件下,随机变量的复杂度(不确定度)
而我们的信息增益恰好是:信息熵 - 条件熵。

换句话说,信息增益代表了在一个条件下,信息复杂度(不确定性)减少的程度

那么我们现在也很好理解了,在决策树算法中,我们的关键就是每次选择一个特征,特征有多个,那么到底按照什么标准来选择哪一个特征。

这个问题就可以用信息增益来度量。如果选择一个特征后,信息增益最大(信息不确定性减少的程度最大),那么我们就选取这个特征

例子

我们有如下数据:
在这里插入图片描述
可以求得随机变量X(嫁与不嫁)的信息熵为:
嫁的个数为6个,占1/2,那么信息熵为-1/2log1/2-1/2log1/2 = -log1/2=0.301
现在假如我知道了一个男生的身高信息。
身高有三个可能的取值{矮,中,高}

矮包括{1,2,3,5,6,11,12},嫁的个数为1个,不嫁的个数为6个

中包括{8,9} ,嫁的个数为2个,不嫁的个数为0个

高包括{4,7,10},嫁的个数为3个,不嫁的个数为0个

先回忆一下条件熵的公式如下:
在这里插入图片描述
我们先求出公式对应的:
H(Y|X = 矮) = -1/7log1/7-6/7log6/7=0.178

H(Y|X=中) = -1log1-0 = 0

H(Y|X=高) = -1log1-0=0

p(X = 矮) = 7/12,p(X =中) = 2/12,p(X=高) = 3/12

则可以得出条件熵为:

7/120.178+2/120+3/12*0 = 0.103

那么我们知道信息熵与条件熵相减就是我们的信息增益,为
0.301-0.103=0.198
所以我们可以得出我们在知道了身高这个信息之后,信息增益是0.198

结论

  • 我们可以知道,本来如果我对一个男生什么都不知道的话,作为他的女朋友决定是否嫁给他的不确定性有0.301这么大
  • 当我们知道男朋友的身高信息后,不确定度减少了0.198.也就是说,身高这个特征对于我们广大女生同学来说,决定嫁不嫁给自己的男朋友是很重要的
  • 至少我们知道了身高特征后,我们原来没有底的心里(0.301)已经明朗一半多了,减少0.198了(大于原来的一半了)。

那么这就类似于非诚勿扰节目里面的桥段了,请问女嘉宾,你只能知道男生的一个特征。请问你想知道哪个特征。

假如其它特征我也全算了,信息增益是身高这个特征最大。那么我就可以说,孟非哥哥,我想知道男嘉宾的一个特征是身高特征。因为它在这些特征中,对于我挑夫君是最重要的,信息增益是最大的,知道了这个特征,嫁与不嫁的不确定度减少的是最多的

总结一下 信息增益在我们现实中还是很适用的。

希望通过我的归纳总结 能让您对信息增益有更深入的理解.

<think>好的,我需要回答用户关于决策树算法的问题,包括其基本概念、工作原理和原理简介。首先,我需要回顾一下决策树的相关知识,确保自己理解正确。决策树是一种监督学习算法,用于分类和回归任务。它的结构类似于树,有根节点、内部节点和叶节点。每个内部节点代表一个特征或属性上的判断条件,分支代表判断结果,叶节点代表终的决策结果。 接下来,我需要解释决策树如何工作。通常包括特征选择、树的生成和剪枝。特征选择是关键,常用的方法有信息增益信息增益比和基尼指数。比如,ID3算法使用信息增益,C4.5使用信息增益比,CART使用基尼指数。这部分需要详细说明,但要注意用中文和正确的LaTeX格式。例如,信息增益的公式应该是$IG(D, A) = H(D) - H(D|A)$,其中$H(D)$是数据集D的经验熵,$H(D|A)$是在特征A条件下的经验条件熵。 然后,树的生成过程是递归的。从根节点开始,根据特征选择方法选择优特征,分割数据集,生成子节点。重复这个过程直到满足停止条件,比如所有样本属于同一类别,或者没有更多特征可用。这里可能需要提到过拟合的问题,因此剪枝是必要的,通过预剪枝或后剪枝来简化模型,提高泛化能力。 还要注意用户提到的引用,需要正确引用站内资料。例如,引用[^3]提到构建决策树的过程包括特征选择、决策节点的确定、树的生成和剪枝,这和我的解释一致,可以在适当的地方引用。 用户可能不太理解如何选择特征,所以需要举例说明。比如,使用信息增益时,选择能大减少不确定性的特征。而基尼指数则衡量数据的不纯度,选择划分后基尼指数小的特征。 此外,需要确保所有的数学公式用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$。例如,基尼指数的公式应该是$Gini(D) = 1 - \sum_{k=1}^{K} p_k^2$,其中$p_k$是第k类样本的比例。 后,生成相关问题时要考虑用户可能的后续疑问,比如决策树的优缺点、不同算法比较(ID3 vs CART)、如何处理连续值或缺失值等。确保问题相关且有助于深入理解。 总结一下,回答的结构应该是:基本概念、工作原理(特征选择、生成、剪枝)、原理简介,然后相关问题。确保每个部分引用正确的来源,如特征选择部分引用,应用场景引用[^1]等。</think>### 决策树算法基本概念与原理 #### 1. **什么是决策树?** 决策树是一种**监督学习算法**,通过树状结构对数据进行分类或回归。其核心思想是通过对特征值的逐步判断,终达到预测目标变量的目的。树的结构包含: - **根节点**:初始判断条件(特征) - **内部节点**:中间判断条件(特征) - **叶节点**:终的分类或回归结果[^3] #### 2. **如何工作?** 决策树的构建分为以下步骤: **(1)特征选择** 选择对数据集划分有效的特征。常用指标包括: - **信息增益**(ID3算法): 公式为 $IG(D, A) = H(D) - H(D|A)$,其中 $H(D)$ 是数据集的经验熵,$H(D|A)$ 是特征 $A$ 的条件熵。 - **基尼指数**(CART算法): 公式为 $Gini(D) = 1 - \sum_{k=1}^{K} p_k^2$,选择划分后基尼指数小的特征[^2]。 **(2)树的生成** 递归地分割数据集: 1. 从根节点开始,选择优特征进行划分。 2. 对每个子节点重复上述过程,直到满足停止条件(如所有样本属于同一类别、无剩余特征或达到预设深度)。 **(3)剪枝** 为防止过拟合,通过预剪枝(提前终止分裂)或后剪枝(生成完整树后裁剪)优化树结构。 #### 3. **原理简介** 决策树的本质是通过**大化信息增益**或**小化不纯度**,将数据划分到更“纯净”的子集中。例如: - **分类任务**:叶节点输出类别标签。 - **回归任务**:叶节点输出连续值(如均值)。 $$ \text{示例:基尼指数计算} \\ Gini(D) = 1 - (p_{\text{是}}^2 + p_{\text{否}}^2) $$ --- ###
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

忘川之水&

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值