深度学习Wide&Deep模型——记忆能力和泛化能力的综合

本文解析了Wide&Deep模型如何结合逻辑回归的强记忆能力和深度学习的泛化能力,以提升推荐系统的效能。模型结构详解了Wide部分处理稀疏特征的记忆优势和Deep部分的深度学习特性。通过实例和结构阐述了模型在App推荐中的应用。
摘要由CSDN通过智能技术生成

Wide&Deep前言

Wide&Deep模型的主要思路正如其名,是由单层的Wide部分和多层的Deep部分组成的混合模型。其中Wide部分的主要作用、是让模型具有较强的“记忆能力”;Deep部分的主要作用是让模型具有“泛化能力”。正因为这样的结构特点,使模型间距了逻辑回归和深度神经网络的优点——能够快速处理并记忆大量历史行为特征,并且具有强大的表达能力。不仅在当时迅速成为业界争相应用的主流模型,而且还衍生出大量Wide&Deep模型为基础结构的混合模型。影响力一直延续到至今。

模型的记忆能力与泛化能力

   Wide&Deep模型的设计初衷和其最大的价值在于同时具备较强的“记忆能 力”和“泛化能力”。“记忆能力”是一个新的概念,“泛化能力”虽在之前的章 节中屡有提及,但从没有给出详细的解释,本节就对这两个概念进行详细的解释。

  “记忆能力”可以被理解为模型直接学习并利用历史数据中物品或者特征的“共现频率"的能力。一般来说,协同过滤、逻辑回归等简单模型有较强的“记忆能力”。由于这类模型的结构简单,原始数据往往可以直接影响推荐结果,产生和类似于“如果点击过A,就推荐B”这类规则式的推荐,这就相当于模型直接记住了历史数据的分布特点,并利用这些记忆进行推荐。

  因为Wide&Deep是由谷歌应用商店(Google Play)推荐团队提出的,所以 这里以App推荐的场景为例,解释什么是模型的“记忆能力”。
  假设在Google Play推荐模型的训练过程中,设置如下组合特征:AND(user_installed_app=netflix, impression_app=pandora)(简称netflix&pandora),它 代表用户已经安装了netflix这款应用,而且曾在应用商店中看到过pandora这款应用。如果以“最终是否安装pandora”为数据标签(label),则可以轻而易举地 统计出 netflix&pandora这个特征和安装pandora这个标签之间的共现频率。假设 二者的共现频率高达10%(全局的平均应用安装率为1%),这个特征如此之强, 以至于在设计模型时,希望模型一发现有这个特征,就推荐pandora这款应用(就 像一个深刻的记忆点一样印在脑海里),这就是所谓的模型的“记忆能力”。像逻 辑回归这类简单模型,如果发现这样的“强特征”,则其相应的权重就会在模型 训练过程中被调整得非常大,这样就实现了对这个特征的直接记忆。相反

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

忘川之水&

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值