混淆矩阵(confusion matrix)衡量的是一个分类器分类的准确程度。理解其概念本身容易理解,但一些特定术语易被混淆。
混淆矩阵的基本模式:
这里就给大家举一个例子来更好的说明一下混淆矩阵的各种情况
观察混淆矩阵,可得如下结论:
-
示例是一个二元分类问题,产生两种可能的分类:“是”或者“不是”。当预测一个事件是否发生时,“是”意味着该事件已经发生,而“否”则相反,该事件没有发生。
-
该模型对这个事件进行了100次预测。
-
在这100次预测结果中,“是”有45次,“否”有55次。但实际上该事件发生了40次。
重要概念:
-
真阳性(True Positive,TP):样本的真实类别是正例,并且模型预测的结果也是正例
-
真阴性(True Negative,TN):样本的真实类别是负例,并且模型将其预测成为负例
-
假阳性(False Positive,FP):样本的真实类别是负例ÿ