ML-from-scratch——贝叶斯回归

这篇博客介绍了如何从头构建一个贝叶斯回归模型,包括数据加载、转换、模型构建和训练过程。作者讨论了贝叶斯决策理论,并强调了在选择模型时要考虑先验概率和似然性的平衡。在模型训练部分,提到了特征的多项式转换和最小二乘近似来求解权重。
摘要由CSDN通过智能技术生成

Table of Contents

1:加载数据

读取后转换成2D数据

代码

拆分训练测试集

2:构建一个贝叶斯回归模型

初始化一些参数,权重按照高斯分布,间隔为10

构建贝叶斯回归模型


比较全面的科普

D是观测值,h是假设,求P(h | D)

为可能的每个单词h,计算一下  P(h) * P(D | h)/ P(D)这个值,然后取最大的,得到的就是最靠谱的猜测。P(D)是固定的,我们在脑子里想的是P(hD)。根据一个人是男生且穿长裤的概率和是女生穿长裤的概率的大小,猜测穿长裤的是男生还是女生,与问题一个人穿长裤的概率无关

只考虑P(D | h)就是最大似然估计,即便一个猜测与数据非常符合,也并不代表这个猜测就是更好的猜测,因为这个猜测本身的可能性P(h)也许就非常低。-1 3 7 11 你说是等差数列更有可能呢?还是 -X^3 / 11 + 9/11*X^2 + 23/11 。一般地说肯定是越低阶的多项式越靠谱(当然前提是也不能忽视“似然”P(D | h) ,明摆着一个多项式分布您愣是去拿直线拟合也是不靠谱的,这就是为什么要把它们两者乘起来考虑。),原因之一就是低阶多项式更常见,先验概率( P(h) )较大。所谓奥卡姆剃刀精神就是说:如果两个理论具有相似的解释力度,那么优先选择那个更简单的(往往也正是更平凡的,更少繁复的,更常见的)。

观测数据总是会有各种各样的误差,比如观测误差,过拟合不好

 

1:加载数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值