结式的根写法

结式的根写法

f(x),g(x)是复数域C上的多项式. R(f,g)是它们的结式.
f ( x ) = ∑ i = 0 m a i x m − i ,   ( m > 0 ) f(x) = \sum_{i=0}^m a_ix^{m-i},\ (m>0) f(x)=i=0maixmi, (m>0)
g ( x ) = ∑ i = 0 n b i x n − i ,   ( n > 0 ) g(x) = \sum_{i=0}^n b_ix^{n-i},\ (n>0) g(x)=i=0nbixni, (n>0)
a 0 ≠ 0 a_0\neq 0 a0=0 时, 而 α 1 , . . . , α m ∈ C α_1,...,α_m \in C α1,...,αmC是f(x)=0的全部根,则
R ( f , g ) = a 0 n ∏ i = 1 m g ( α i ) R(f,g) = a_0^n\prod_{i=1}^mg(α_i) R(f,g)=a0ni=1mg(αi)

证明

对f(x)的次数m进行归纳。
1° 当m=1时,α是 f ( x ) = a 0 x + a 1 = 0 f(x)=a_0x+a_1=0 f(x)=a0x+a1=0的根,则 a 0 α + a 1 = 0 a_0α+a_1=0 a0α+a1=0
R ( f , g ) = ∣ a 0 a 1 a 0 a 1 . . . . . . a 0 a 1 b 0 b 1 . . . b n − 1 b n ∣ R(f,g) = \left| \begin{array}{ccc} a_0&a_1 \\ &a_0&a_1 \\ &&.&.\\ &&&.&.\\ &&&&.&.\\ &&&&&a_0&a_1\\ b_0&b_1&&...&&b_{n-1}&b_n \end{array} \right| R(f,g)=a0b0a1a0b1a1.........a0bn1a1bn
将第一列乘上α加到第二列上, a 1 − > a 0 α + a 1 = 0 , b 1 − > b 0 α + b 1 a_1 -> a_0α+a_1 = 0, b_1->b_0α + b_1 a1>a0α+a1=0,b1>b0α+b1;
再将第二列乘上α加到第二列上, a 1 − > 0 , b 2 − > b 0 α 2 + b 1 α + b 2 a_1 ->0, b_2 -> b_0α^2+b_1α + b_2 a1>0,b2>b0α2+b1α+b2;
依照此法进行n次,得到
R ( f , g ) = ∣ a 0 a 0 . . . a 0 b 0 b 0 α + b 1 . . . ∑ i = 0 n − 1 b i α n − 1 − i ∑ i = 0 n b i α n − i = g ( α ) ∣ = a 0 n g ( α ) R(f,g) = \left| \begin{array}{ccc} a_0 \\ &a_0 \\ &&.\\ &&&.\\ &&&&.\\ &&&&&a_0\\ b_0&b_0α + b_1&&...&&\sum_{i=0}^{n-1} b_iα^{n-1-i}&\sum_{i=0}^nb_iα^{n-i}=g(α) \end{array} \right| = a_0^ng(α) R(f,g)=a0b0a0b0α+b1......a0i=0n1biαn1ii=0nbiαni=g(α)=a0ng(α)
2° 假设当m等于k时, R ( f , g ) = a 0 n ∏ i = 1 m g ( α i ) R(f,g) = a_0^n\prod_{i=1}^mg(α_i) R(f,g)=a0ni=1mg(αi);
当m=k+1时,取f(x)=0的一个根α,则
f ( x ) = ( x − α ) h ( x ) f(x) = (x-α)h(x) f(x)=(xα)h(x)
h ( x ) = ∑ i = 0 k c i x k − i h(x) = \sum_{i=0}^k c_ix^{k-i} h(x)=i=0kcixki
比较f(x) 和 (x-α)h(x)的系数,发现 a 0 = c 0 , a i = c i − α c i − 1   ( i > = 1 ) a_0 = c_0, a_i = c_i - αc_{i-1}\ (i>=1) a0=c0,ai=ciαci1 (i>=1).
依照1°中的方法将前一列乘上α加到当前列,得到
R ( f , g ) = ∣ c 0 c 1 . . . c k c 0 c 1 . . . c k . . . . . . c 0 c 1 . . . c k b 0 b 0 α + b 1 b 0 α 2 + b 1 α + b 2 . . . g ( α ) . . . α k − 1 g ( α ) α k g ( α ) b 0 b 0 α + b 1 b 0 α 2 + b 1 α + b 2 . . . g ( α ) . . . α k − 1 g ( α ) . . . . . . . . b 0 b 0 α + b 1 b 0 α 2 + b 1 α + b 2 . . . g ( α ) ∣ R(f,g) = \left| \begin{array}{ccc} c_0&c_1&...&c_k \\ &c_0&c_1&...&c_k \\ &&.&.&...&.\\ &&&c_0&c_1&...&c_k \\ b_0&b_0α + b_1&b_0α^2+b_1α+b_2&...&g(α)&...&α^{k-1}g(α)&α^kg(α) \\ &b_0&b_0α + b_1&b_0α^2+b_1α+b_2&...&g(α)&...&α^{k-1}g(α)\\ &&.&.&.&...&.&.\\ &&&b_0&b_0α + b_1&b_0α^2+b_1α+b_2&...&g(α) \end{array} \right| R(f,g)=c0b0c1c0b0α+b1b0...c1.b0α2+b1α+b2b0α+b1.ck....c0...b0α2+b1α+b2.b0ck...c1g(α)....b0α+b1.......g(α)...b0α2+b1α+b2ckαk1g(α).......αkg(α)αk1g(α).g(α)
将第n+1行减去第n+2行与α的乘积;
依照此方法进行k次,得到
R ( f , g ) = ∣ c 0 c 1 . . . c k c 0 c 1 . . . c k . . . . . . c 0 c 1 . . . c k b 0 b 1 b 2 . . . b n b 0 b 1 b 2 . . . b n . . . . . . . b 0 b 0 α + b 1 b 0 α 2 + b 1 α + b 2 . . . g ( α ) ∣ = ∣ c 0 c 1 . . . c k c 0 c 1 . . . c k . . . . . . c 0 c 1 . . . c k b 0 b 1 b 2 . . . b n . . . . . . . b 0 b 1 b 2 . . . b n ∣ g ( α ) = R ( h , g ) g ( α ) = a 0 n ∏ i = 1 k + 1 g ( α i ) \begin{aligned} R(f,g) &= \left| \begin{array}{ccc} c_0&c_1&...&c_k \\ &c_0&c_1&...&c_k \\ &&.&.&...&.\\ &&&c_0&c_1&...&c_k \\ b_0&b_1&b_2&...&b_n\\ &b_0&b_1&b_2&...&b_n\\ &&.&.&.&...&.\\ &&&b_0&b_0α + b_1&b_0α^2+b_1α+b_2&...&g(α) \end{array} \right|\\ &= \left| \begin{array}{ccc} c_0&c_1&...&c_k \\ &c_0&c_1&...&c_k \\ &&.&.&...&.\\ &&&c_0&c_1&...&c_k \\ b_0&b_1&b_2&...&b_n\\ &.&.&.&...&.\\ &&b_0&b_1&b_2&...&b_n \end{array} \right| g(α)\\ &=R(h,g)g(α)\\ &=a_0^n\prod_{i=1}^{k+1}g(α_i) \end{aligned} R(f,g)=c0b0c1c0b1b0...c1.b2b1.ck....c0...b2.b0ck...c1bn....b0α+b1....bn...b0α2+b1α+b2ck....g(α)=c0b0c1c0b1....c1.b2.b0ck....c0....b1ck...c1bn...b2........ckbng(α)=R(h,g)g(α)=a0ni=1k+1g(αi)
至此,m=k+1时,R(f,g) = a_0n\prod_{i=1}{k+1}g(α_i).
综合1° 2°,
R ( f , g ) = a 0 n ∏ i = 1 m g ( α i ) R(f,g) = a_0^n\prod_{i=1}^mg(α_i) R(f,g)=a0ni=1mg(αi)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值