结式的根写法
f(x),g(x)是复数域C上的多项式. R(f,g)是它们的结式.
f
(
x
)
=
∑
i
=
0
m
a
i
x
m
−
i
,
(
m
>
0
)
f(x) = \sum_{i=0}^m a_ix^{m-i},\ (m>0)
f(x)=i=0∑maixm−i, (m>0)
g
(
x
)
=
∑
i
=
0
n
b
i
x
n
−
i
,
(
n
>
0
)
g(x) = \sum_{i=0}^n b_ix^{n-i},\ (n>0)
g(x)=i=0∑nbixn−i, (n>0)
当
a
0
≠
0
a_0\neq 0
a0=0 时, 而
α
1
,
.
.
.
,
α
m
∈
C
α_1,...,α_m \in C
α1,...,αm∈C是f(x)=0的全部根,则
R
(
f
,
g
)
=
a
0
n
∏
i
=
1
m
g
(
α
i
)
R(f,g) = a_0^n\prod_{i=1}^mg(α_i)
R(f,g)=a0ni=1∏mg(αi)
证明
对f(x)的次数m进行归纳。
1° 当m=1时,α是
f
(
x
)
=
a
0
x
+
a
1
=
0
f(x)=a_0x+a_1=0
f(x)=a0x+a1=0的根,则
a
0
α
+
a
1
=
0
a_0α+a_1=0
a0α+a1=0,
R
(
f
,
g
)
=
∣
a
0
a
1
a
0
a
1
.
.
.
.
.
.
a
0
a
1
b
0
b
1
.
.
.
b
n
−
1
b
n
∣
R(f,g) = \left| \begin{array}{ccc} a_0&a_1 \\ &a_0&a_1 \\ &&.&.\\ &&&.&.\\ &&&&.&.\\ &&&&&a_0&a_1\\ b_0&b_1&&...&&b_{n-1}&b_n \end{array} \right|
R(f,g)=∣∣∣∣∣∣∣∣∣∣∣∣∣∣a0b0a1a0b1a1.........a0bn−1a1bn∣∣∣∣∣∣∣∣∣∣∣∣∣∣
将第一列乘上α加到第二列上,
a
1
−
>
a
0
α
+
a
1
=
0
,
b
1
−
>
b
0
α
+
b
1
a_1 -> a_0α+a_1 = 0, b_1->b_0α + b_1
a1−>a0α+a1=0,b1−>b0α+b1;
再将第二列乘上α加到第二列上,
a
1
−
>
0
,
b
2
−
>
b
0
α
2
+
b
1
α
+
b
2
a_1 ->0, b_2 -> b_0α^2+b_1α + b_2
a1−>0,b2−>b0α2+b1α+b2;
依照此法进行n次,得到
R
(
f
,
g
)
=
∣
a
0
a
0
.
.
.
a
0
b
0
b
0
α
+
b
1
.
.
.
∑
i
=
0
n
−
1
b
i
α
n
−
1
−
i
∑
i
=
0
n
b
i
α
n
−
i
=
g
(
α
)
∣
=
a
0
n
g
(
α
)
R(f,g) = \left| \begin{array}{ccc} a_0 \\ &a_0 \\ &&.\\ &&&.\\ &&&&.\\ &&&&&a_0\\ b_0&b_0α + b_1&&...&&\sum_{i=0}^{n-1} b_iα^{n-1-i}&\sum_{i=0}^nb_iα^{n-i}=g(α) \end{array} \right| = a_0^ng(α)
R(f,g)=∣∣∣∣∣∣∣∣∣∣∣∣∣∣a0b0a0b0α+b1......a0∑i=0n−1biαn−1−i∑i=0nbiαn−i=g(α)∣∣∣∣∣∣∣∣∣∣∣∣∣∣=a0ng(α)
2° 假设当m等于k时,
R
(
f
,
g
)
=
a
0
n
∏
i
=
1
m
g
(
α
i
)
R(f,g) = a_0^n\prod_{i=1}^mg(α_i)
R(f,g)=a0n∏i=1mg(αi);
当m=k+1时,取f(x)=0的一个根α,则
f
(
x
)
=
(
x
−
α
)
h
(
x
)
f(x) = (x-α)h(x)
f(x)=(x−α)h(x)
h
(
x
)
=
∑
i
=
0
k
c
i
x
k
−
i
h(x) = \sum_{i=0}^k c_ix^{k-i}
h(x)=i=0∑kcixk−i
比较f(x) 和 (x-α)h(x)的系数,发现
a
0
=
c
0
,
a
i
=
c
i
−
α
c
i
−
1
(
i
>
=
1
)
a_0 = c_0, a_i = c_i - αc_{i-1}\ (i>=1)
a0=c0,ai=ci−αci−1 (i>=1).
依照1°中的方法将前一列乘上α加到当前列,得到
R
(
f
,
g
)
=
∣
c
0
c
1
.
.
.
c
k
c
0
c
1
.
.
.
c
k
.
.
.
.
.
.
c
0
c
1
.
.
.
c
k
b
0
b
0
α
+
b
1
b
0
α
2
+
b
1
α
+
b
2
.
.
.
g
(
α
)
.
.
.
α
k
−
1
g
(
α
)
α
k
g
(
α
)
b
0
b
0
α
+
b
1
b
0
α
2
+
b
1
α
+
b
2
.
.
.
g
(
α
)
.
.
.
α
k
−
1
g
(
α
)
.
.
.
.
.
.
.
.
b
0
b
0
α
+
b
1
b
0
α
2
+
b
1
α
+
b
2
.
.
.
g
(
α
)
∣
R(f,g) = \left| \begin{array}{ccc} c_0&c_1&...&c_k \\ &c_0&c_1&...&c_k \\ &&.&.&...&.\\ &&&c_0&c_1&...&c_k \\ b_0&b_0α + b_1&b_0α^2+b_1α+b_2&...&g(α)&...&α^{k-1}g(α)&α^kg(α) \\ &b_0&b_0α + b_1&b_0α^2+b_1α+b_2&...&g(α)&...&α^{k-1}g(α)\\ &&.&.&.&...&.&.\\ &&&b_0&b_0α + b_1&b_0α^2+b_1α+b_2&...&g(α) \end{array} \right|
R(f,g)=∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣c0b0c1c0b0α+b1b0...c1.b0α2+b1α+b2b0α+b1.ck....c0...b0α2+b1α+b2.b0ck...c1g(α)....b0α+b1.......g(α)...b0α2+b1α+b2ckαk−1g(α).......αkg(α)αk−1g(α).g(α)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
将第n+1行减去第n+2行与α的乘积;
依照此方法进行k次,得到
R
(
f
,
g
)
=
∣
c
0
c
1
.
.
.
c
k
c
0
c
1
.
.
.
c
k
.
.
.
.
.
.
c
0
c
1
.
.
.
c
k
b
0
b
1
b
2
.
.
.
b
n
b
0
b
1
b
2
.
.
.
b
n
.
.
.
.
.
.
.
b
0
b
0
α
+
b
1
b
0
α
2
+
b
1
α
+
b
2
.
.
.
g
(
α
)
∣
=
∣
c
0
c
1
.
.
.
c
k
c
0
c
1
.
.
.
c
k
.
.
.
.
.
.
c
0
c
1
.
.
.
c
k
b
0
b
1
b
2
.
.
.
b
n
.
.
.
.
.
.
.
b
0
b
1
b
2
.
.
.
b
n
∣
g
(
α
)
=
R
(
h
,
g
)
g
(
α
)
=
a
0
n
∏
i
=
1
k
+
1
g
(
α
i
)
\begin{aligned} R(f,g) &= \left| \begin{array}{ccc} c_0&c_1&...&c_k \\ &c_0&c_1&...&c_k \\ &&.&.&...&.\\ &&&c_0&c_1&...&c_k \\ b_0&b_1&b_2&...&b_n\\ &b_0&b_1&b_2&...&b_n\\ &&.&.&.&...&.\\ &&&b_0&b_0α + b_1&b_0α^2+b_1α+b_2&...&g(α) \end{array} \right|\\ &= \left| \begin{array}{ccc} c_0&c_1&...&c_k \\ &c_0&c_1&...&c_k \\ &&.&.&...&.\\ &&&c_0&c_1&...&c_k \\ b_0&b_1&b_2&...&b_n\\ &.&.&.&...&.\\ &&b_0&b_1&b_2&...&b_n \end{array} \right| g(α)\\ &=R(h,g)g(α)\\ &=a_0^n\prod_{i=1}^{k+1}g(α_i) \end{aligned}
R(f,g)=∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣c0b0c1c0b1b0...c1.b2b1.ck....c0...b2.b0ck...c1bn....b0α+b1....bn...b0α2+b1α+b2ck....g(α)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣=∣∣∣∣∣∣∣∣∣∣∣∣∣∣c0b0c1c0b1....c1.b2.b0ck....c0....b1ck...c1bn...b2........ckbn∣∣∣∣∣∣∣∣∣∣∣∣∣∣g(α)=R(h,g)g(α)=a0ni=1∏k+1g(αi)
至此,m=k+1时,R(f,g) = a_0n\prod_{i=1}{k+1}g(α_i).
综合1° 2°,
R
(
f
,
g
)
=
a
0
n
∏
i
=
1
m
g
(
α
i
)
R(f,g) = a_0^n\prod_{i=1}^mg(α_i)
R(f,g)=a0ni=1∏mg(αi)