Q上多项式可约性深化定理
令Z[x]是整数环Z上的多项式环, 对于f(x)∈Z[x]f(x)\in Z[x]f(x)∈Z[x], 且f(x)在有理数域Q上可约,则一定存在非零次多项式g(x),h(x)∈Z[x]g(x),h(x)\in Z[x]g(x),h(x)∈Z[x],使得f(x)=g(x)∗h(x)f(x) = g(x) * h(x)f(x)=g(x)∗h(x)。
证明
引理1(高斯引理)
本原多项式
f(x)∈Z[x]f(x)\in Z[x]f(x)∈Z[x],且f(x)的系数a0,...,ana_0,...,a_na0,...,an互素(n>0),则称为本原多项式
高斯引理描述
两个本原多项式的乘积仍然是本原多项式。
高斯引理证明
f(x),g(x)是两个本原多项式,它们的系数分别是a0,...,ana_0,...,a_na0,...,an和b0,...,bmb_0,...,b_mb0,...,bm, 它们的乘积为h(x),其系数为c0,...,crc_0,...,c_rc0,...,cr(r=m+n), 则
ck=∑i+j=kaibjc_k = \sum_{i+j =k}a_ib_jck=i+j=k∑aibj
反证法来证明。假设h(x)的系数c0,...,crc_0,...,c_rc0,...,cr有公约素数p。
假设as是a0,...,ana_s是a_0,...,a_nas是a0