Q上多项式可约性深化定理

本文详细介绍了Q上多项式可约性的一个深化定理,并通过高斯引理进行证明。首先,定义了本原多项式,并阐述了高斯引理,即两个本原多项式的乘积仍为本原。接着,使用反证法证明了高斯引理,最后以此为基础证明了原命题,即若f(x)在Q上可约,则存在g(x),h(x)使得f(x)=g(x)h(x),且g(x),h(x)次数小于f(x)。" 127669807,14932050,日文文献检索全攻略,"['文献查找', '日文文献', '学术检索', '科研资源', '数据库']

Q上多项式可约性深化定理

令Z[x]是整数环Z上的多项式环, 对于f(x)∈Z[x]f(x)\in Z[x]f(x)Z[x], 且f(x)在有理数域Q上可约,则一定存在非零次多项式g(x),h(x)∈Z[x]g(x),h(x)\in Z[x]g(x),h(x)Z[x],使得f(x)=g(x)∗h(x)f(x) = g(x) * h(x)f(x)=g(x)h(x)

证明

引理1(高斯引理)

本原多项式

f(x)∈Z[x]f(x)\in Z[x]f(x)Z[x],且f(x)的系数a0,...,ana_0,...,a_na0,...,an互素(n>0),则称为本原多项式

高斯引理描述

两个本原多项式的乘积仍然是本原多项式。

高斯引理证明

f(x),g(x)是两个本原多项式,它们的系数分别是a0,...,ana_0,...,a_na0,...,anb0,...,bmb_0,...,b_mb0,...,bm, 它们的乘积为h(x),其系数为c0,...,crc_0,...,c_rc0,...,cr(r=m+n), 则
ck=∑i+j=kaibjc_k = \sum_{i+j =k}a_ib_jck=i+j=kaibj
反证法来证明。假设h(x)的系数c0,...,crc_0,...,c_rc0,...,cr有公约素数p。
假设as是a0,...,ana_s是a_0,...,a_nasa0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值