矩阵范数不等式

矩阵范数不等式

∣ ∣ A ∣ ∣ 2 ≤ ∣ ∣ A ∣ ∣ 1 ∣ ∣ A ∣ ∣ ∞ ||A||_2 \le ||A||_1||A||_{\infty} A2A1A

证明

引理1 严格对角占优的矩阵行列式为正

n维实矩阵A, 满足
a i i > ∑ 1 ≤ j ≤ n , j ≠ i ∣ a i j ∣ a_{ii}\gt \sum_{1\le j\le n, j\ne i}|a_{ij}| aii>1jn,j=iaij
则称A为严格对角占优的矩阵,而
∣ A ∣ > 0 |A|>0 A>0

引理1的证明

对矩阵A的维数n使用数学归纳法证明

1° 当n=1时,显然成立

2° 假设当n=k时,显然成立

当n=k+1时,

A = [ a 11 b ⃗ 1 T b ⃗ 2 C ] A = \left[ \begin{matrix} a_{11} & \vec b_1^T\\ \vec b_2 & C\\ \end{matrix} \right] A=[a11b 2b 1TC]
严格对角占优条件得到, a 11 > 0 a_{11} \gt 0 a11>0,所以通过行的初等变换,将 b ⃗ 2 \vec b2 b 2转换为 0 ⃗ \vec 0 0 ,此时C变为 C ′ { c i j ′ } C'\{c'_{ij}\} C{ cij},取任一行i-1行
c i − 1   j − 1 ′ = 1 a 1   1 ( a 1   1 a i j − a 1 j a i 1 ) c'_{i-1\ j-1} = \frac 1{a_{1\ 1}}({a_{1\ 1}a_{ij} - a_{1j}a_{i1}}) ci1 j1=a1 11(a1 1aija1jai1)
所以
∑ 2 ≤ j ≤ n , j ≠ i ∣ c i − 1   j − 1 ′ ∣ = ∑ 2 ≤ j ≤ n , j ≠ i 1 a 1   1 ∣ a 1   1 a i j − a 1 j a i 1 ∣ ≤ ∑ 2 ≤ j ≤ n , j ≠ i ∣ a i j ∣ + ∣ a i 1 ∣ a 1   1 ∑ 2 ≤ j ≤ n , j ≠ i ∣ a 1 j ∣ < a i i − ∣ a i 1 ∣ + ∣ a i 1 ∣ − ∣ a i 1 ∣ ∣ a 1 i ∣ a 1   1 = a i i − ∣ a i 1 ∣ ∣ a 1 i ∣ a 1   1 \begin{aligned} \sum_{2\le j \le n, j\ne i}|c'_{i-1\ j-1}| &= \sum_{2\le j \le n, j\ne i} \frac 1{a_{1\ 1}}|{a_{1\ 1}a_{ij} - a_{1j}a_{i1}}|\\ &\le \sum_{2\le j \le n, j\ne i} |a_{ij}| + \frac {|a_{i1}|}{a_{1\ 1}} \sum_{2\le j \le n, j\ne i}|a_{1j}|\\ &\lt a_{ii} - |a_{i1}| + |a_{i1}| - \frac {|a_{i1}||a_{1i}|}{a_{1\ 1}} \\ &= a_{ii} - \frac {|a_{i1}||a_{1i}|}{a_{1\ 1}} \end{aligned} 2jn,j=ici1 j1=2jn,j=ia1 

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值