伽马函数简介

伽马函数是阶乘向实数域的延拓,与贝塔函数有密切关系。本文介绍了伽马函数的定义、性质,包括它如何与贝塔函数和阶乘相关联,并通过余元定理和一系列引理的证明探讨了其内在联系。

伽马函数

定义

Γ(x)=∫0+∞tx−1e−tdtΓ(x)= \int_0^{+\infty} t^{x-1}e^{-t}dtΓ(x)=0+tx1etdt

性质

与贝塔函数的关系

B(x,y)=∫01tx−1(1−t)y−1dtB(x,y)= \int_0^1 t^{x-1}(1-t)^{y-1}dtB(x,y)=01tx1(1t)y1dt
B(x,y)=Γ(x)Γ(y)/Γ(x+y)B(x,y) = Γ(x)Γ(y)/Γ(x+y)B(x,y)=Γ(x)Γ(y)/Γ(x+y)

证明

只需证明 Γ(x)Γ(y) = B(x,y)Γ(x+y)

Γ(x)Γ(y)=∫0+∞tx−1e−tdt∗∫0+∞ty−1e−tdt=∫0+∞∫0+∞tx−1sy−1e−(t+s)dsdt=4∫0+∞∫0+∞u2x−2v2y−2e−(u2+v2)uvdudv    (t=ut,s=vt)=∫−∞+∞∫−∞+∞∣u∣2x−1∣v∣2y−1e−(u2+v2)dudv=∫0+∞∫02πr∣rcosθ∣2x−1∣rsinθ∣2y−1e−r2dθdr    (u=rcosθ,v=rsinθ)=∫0+∞r2x+2y−1e−r2dr∗∫02π∣cosθ∣2x−1∣sinθ∣2y−1dθ=12∫0+∞(r2)x+y−1e−r2d(r2)∗4∫0π2∣cosθ∣2x−1∣sinθ∣2y−1dθ=Γ(x)Γ(y)∗∫01lx−1(1−l)y−1dl    (l=cos2θ)=Γ(x)Γ(y)B(x,y)\begin{aligned} Γ(x)Γ(y) &= \int_0^{+\infty} t^{x-1}e^{-t}dt * \int_0^{+\infty} t^{y-1}e^{-t}dt \\ &= \int_0^{+\infty}\int_0^{+\infty} t^{x-1}s^{y-1} e^{-(t+s)}dsdt \\ &= 4\int_0^{+\infty}\int_0^{+\infty} u^{2x-2}v^{2y-2} e^{-(u^2+v^2)}uvdudv\ \ \ \ (t=u^t,s=v^t) \\ &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} |u|^{2x-1}|v|^{2y-1} e^{-(u^2+v^2)}dudv \\ &= \int_0^{+\infty}\int_0^{2\pi} r|rcosθ|^{2x-1}|rsinθ|^{2y-1}e^{-r^2}dθdr\ \ \ \ (u=rcosθ,v=rsinθ) \\ &= \int_0^{+\infty} r^{2x+2y-1}e^{-r^2}dr * \int_0^{2\pi}|cosθ|^{2x-1}|sinθ|^{2y-1}dθ \\ &= \frac12 \int_0^{+\infty} (r^2)^{x+y-1}e^{-r^2}d(r^2) * 4\int_0^{\frac \pi 2}|cosθ|^{2x-1}|sinθ|^{2y-1}dθ \\ &= Γ(x)Γ(y) * \int_0^1 l^{x-1}(1-l)^{y-1} dl\ \ \ \ (l=cos^2θ) \\ &= Γ(x)Γ(y)B(x,y) \end{aligned}Γ(x)Γ(y)=0+tx1etdt0+ty1etdt=0+0+tx1sy1e(t+s)dsdt=40+0+u2x2v2y2e(u2+v2)uvdudv    (t=ut,s=vt)=++u2x1v2y1e(u2+v2)dudv=0+02πrrcosθ2x1rsinθ2y1er2dθdr    (u=rcosθ,v=rsinθ)=0+r2x+2y1er2dr02πcosθ2x1sinθ2y1dθ=210+(r2)x+y1er2d(r2)402πcosθ2x1sinθ2y1dθ=Γ(x)Γ(y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值