伽马函数
定义
Γ(x)=∫0+∞tx−1e−tdtΓ(x)= \int_0^{+\infty} t^{x-1}e^{-t}dtΓ(x)=∫0+∞tx−1e−tdt
性质
与贝塔函数的关系
B(x,y)=∫01tx−1(1−t)y−1dtB(x,y)= \int_0^1 t^{x-1}(1-t)^{y-1}dtB(x,y)=∫01tx−1(1−t)y−1dt
B(x,y)=Γ(x)Γ(y)/Γ(x+y)B(x,y) = Γ(x)Γ(y)/Γ(x+y)B(x,y)=Γ(x)Γ(y)/Γ(x+y)
证明
只需证明 Γ(x)Γ(y) = B(x,y)Γ(x+y)
Γ(x)Γ(y)=∫0+∞tx−1e−tdt∗∫0+∞ty−1e−tdt=∫0+∞∫0+∞tx−1sy−1e−(t+s)dsdt=4∫0+∞∫0+∞u2x−2v2y−2e−(u2+v2)uvdudv (t=ut,s=vt)=∫−∞+∞∫−∞+∞∣u∣2x−1∣v∣2y−1e−(u2+v2)dudv=∫0+∞∫02πr∣rcosθ∣2x−1∣rsinθ∣2y−1e−r2dθdr (u=rcosθ,v=rsinθ)=∫0+∞r2x+2y−1e−r2dr∗∫02π∣cosθ∣2x−1∣sinθ∣2y−1dθ=12∫0+∞(r2)x+y−1e−r2d(r2)∗4∫0π2∣cosθ∣2x−1∣sinθ∣2y−1dθ=Γ(x)Γ(y)∗∫01lx−1(1−l)y−1dl (l=cos2θ)=Γ(x)Γ(y)B(x,y)\begin{aligned} Γ(x)Γ(y) &= \int_0^{+\infty} t^{x-1}e^{-t}dt * \int_0^{+\infty} t^{y-1}e^{-t}dt \\ &= \int_0^{+\infty}\int_0^{+\infty} t^{x-1}s^{y-1} e^{-(t+s)}dsdt \\ &= 4\int_0^{+\infty}\int_0^{+\infty} u^{2x-2}v^{2y-2} e^{-(u^2+v^2)}uvdudv\ \ \ \ (t=u^t,s=v^t) \\ &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} |u|^{2x-1}|v|^{2y-1} e^{-(u^2+v^2)}dudv \\ &= \int_0^{+\infty}\int_0^{2\pi} r|rcosθ|^{2x-1}|rsinθ|^{2y-1}e^{-r^2}dθdr\ \ \ \ (u=rcosθ,v=rsinθ) \\ &= \int_0^{+\infty} r^{2x+2y-1}e^{-r^2}dr * \int_0^{2\pi}|cosθ|^{2x-1}|sinθ|^{2y-1}dθ \\ &= \frac12 \int_0^{+\infty} (r^2)^{x+y-1}e^{-r^2}d(r^2) * 4\int_0^{\frac \pi 2}|cosθ|^{2x-1}|sinθ|^{2y-1}dθ \\ &= Γ(x)Γ(y) * \int_0^1 l^{x-1}(1-l)^{y-1} dl\ \ \ \ (l=cos^2θ) \\ &= Γ(x)Γ(y)B(x,y) \end{aligned}Γ(x)Γ(y)=∫0+∞tx−1e−tdt∗∫0+∞ty−1e−tdt=∫0+∞∫0+∞tx−1sy−1e−(t+s)dsdt=4∫0+∞∫0+∞u2x−2v2y−2e−(u2+v2)uvdudv (t=ut,s=vt)=∫−∞+∞∫−∞+∞∣u∣2x−1∣v∣2y−1e−(u2+v2)dudv=∫0+∞∫02πr∣rcosθ∣2x−1∣rsinθ∣2y−1e−r2dθdr (u=rcosθ,v=rsinθ)=∫0+∞r2x+2y−1e−r2dr∗∫02π∣cosθ∣2x−1∣sinθ∣2y−1dθ=21∫0+∞(r2)x+y−1e−r2d(r2)∗4∫02π∣cosθ∣2x−1∣sinθ∣2y−1dθ=Γ(x)Γ(y)∗