【矩阵论】7.范数理论——基本概念——矩阵范数生成向量范数&谱范不等式

矩阵论的所有文章,主要内容参考北航赵迪老师的课件

[注]由于矩阵论对计算机比较重要,所以选修了这门课,但不是专业搞数学的,所以存在很多口语化描述,而且对很多东西理解不是很正确与透彻,欢迎大家指正。我可能间歇性忙,但有空一定会回复修改的。

矩阵论
1. 准备知识——复数域上矩阵,Hermite变换
1.准备知识——复数域上的内积域正交阵
1.准备知识——Hermite阵,二次型,矩阵合同,正定阵,幂0阵,幂等阵,矩阵的秩
2. 矩阵分解——SVD准备知识——奇异值
2. 矩阵分解——SVD
2. 矩阵分解——QR分解
2. 矩阵分解——正定阵分解
2. 矩阵分解——单阵谱分解
2. 矩阵分解——正规分解——正规阵
2. 矩阵分解——正规谱分解
2. 矩阵分解——高低分解
3. 矩阵函数——常见解析函数
3. 矩阵函数——谱公式,幂0与泰勒计算矩阵函数
3. 矩阵函数——矩阵函数求导
4. 矩阵运算——观察法求矩阵特征值特征向量
4. 矩阵运算——张量积
4. 矩阵运算——矩阵拉直
4.矩阵运算——广义逆——加号逆定义性质与特殊矩阵的加号逆
4. 矩阵运算——广义逆——加号逆的计算
4. 矩阵运算——广义逆——加号逆应用
4. 矩阵运算——广义逆——减号逆
5. 线性空间与线性变换——线性空间
5. 线性空间与线性变换——生成子空间
5. 线性空间与线性变换——线性映射与自然基分解,线性变换
6. 正规方程与矩阵方程求解
7. 范数理论——基本概念——向量范数与矩阵范数
7.范数理论——基本概念——矩阵范数生成向量范数&谱范不等式
7. 矩阵理论——算子范数
7.范数理论——范数估计——许尔估计&谱估计
7. 范数理论——非负/正矩阵
8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵
8. 常用矩阵总结——镜面阵,正定阵
8. 常用矩阵总结——单阵,正规阵,幂0阵,幂等阵,循环阵


在这里插入图片描述

7.1.3 矩阵范数产生向量范数

C n × n C^{n\times n} Cn×n 上任一矩阵范数 ∥ ∙ ∥ \Vert \bullet\Vert 都产生一个向量范数 φ ( X ) = ∥ X ∥ V \varphi(X)=\Vert X\Vert_V φ(X)=XV

  • 矩阵范数与向量范数的相容性: φ ( A x ) ≤ ∥ A ∥ φ ( x ) \varphi(Ax)\le \Vert A\Vert\varphi(x) φ(Ax)Aφ(x) ,即 ∥ A X ∥ V ≤ ∥ A ∥ ⋅ ∥ X ∥ V \Vert AX\Vert_V\le \Vert A\Vert\cdot\Vert X\Vert_V AXVAXV , ∀ A ∈ C n , n , ∀ X ∈ C n \forall A\in C^{n,n},\forall X\in C^n ACn,n,XCn

证明:
设向量范数 φ ( X ) = Δ ∥ X α T ∥ , ∀ X ∈ C n , α = ( a 1 ⋮ a n ) ≠ 0 ⃗ 为权向量 , 表示对每个列向量放缩形成矩阵 则 φ ( X ) = Δ ∥ X α T ∥ = ∥ a 1 X , a 2 X , ⋯   , a n X ∥ ,右边为一个矩阵范数 显然①正性: φ ( X ) = ∥ X α T ∥ ≥ 0 ②齐性: φ ( k X ) = ∥ ( k X ) α T ∥ = ∥ a 1 k X , a 2 k X , ⋯   , a n k X ∥ = ∣ k ∣ ∥ a 1 X , a 2 X , ⋯   , a n X n ∥ = ∣ k ∣ φ ( X ) ③三角性:令 X , Y ∈ C n , ∵ φ ( X + Y ) = ∥ ( X + Y ) α T ∥ = ∥ X α T + Y α T ∥ ≤ ∥ X α T ∥ + ∥ Y α T ∥ = φ ( X ) + φ ( Y ) ④相容性: φ ( A X ) = ∥ ( A X ) α T ∥ = ∥ A ( X α T ) ∥ ≤ ∥ A ∥ ⋅ ∥ X α T ∥ = ∥ A ∥ ⋅ φ ( X ) 可证, ∥ A X ∥ V ≤ ∥ A ∥ ⋅ ∥ X ∥ V , 即矩阵范数与向量范数有相容性 \begin{aligned} &设向量范数 \varphi(X)\overset{\Delta}{=}\Vert X\alpha^T\Vert,\forall X\in C^n,\alpha=\left( \begin{matrix} a_1\\\vdots\\a_n \end{matrix} \right)\neq \vec{0}为权向量,表示对每个列向量放缩形成矩阵\\ &则\varphi(X)\overset{\Delta}{=}\Vert X\alpha^T\Vert=\Vert a_1X,a_2X,\cdots,a_nX\Vert,右边为一个矩阵范数\\ &显然 ①正性:\varphi(X)=\Vert X\alpha^T \Vert\ge 0\\ & ②齐性:\varphi(kX)=\Vert (kX)\alpha^T\Vert=\Vert a_1kX,a_2kX,\cdots,a_nkX\Vert=\vert k\vert\Vert a_1X,a_2X,\cdots,a_nX_n\Vert=\vert k\vert\varphi(X)\\ &③三角性:令X,Y\in C^n,\\ &\quad \because \varphi(X+Y)=\Vert (X+Y)\alpha^T\Vert =\Vert X\alpha^T+Y\alpha^T \Vert\le \Vert X\alpha^T\Vert+\Vert Y\alpha^T\Vert =\varphi(X)+\varphi(Y)\\ &④相容性:\varphi(AX)=\Vert (AX)\alpha^T\Vert=\Vert A(X\alpha^T)\Vert\le \Vert A\Vert\cdot\Vert X\alpha^T\Vert=\Vert A\Vert\cdot\varphi(X)\\ &可证,\Vert AX\Vert_V\le \Vert A\Vert\cdot\Vert X\Vert_V,即矩阵范数与向量范数有相容性 \end{aligned} 设向量范数φ(X)=ΔXαT,XCn,α= a1an =0 为权向量,表示对每个列向量放缩形成矩阵φ(X)=ΔXαT=a1X,a2X,,anX,右边为一个矩阵范数显然正性:φ(X)=XαT0齐性:φ(kX)=(kX)αT=a1kX,a2kX,,ankX=k∣∥a1X,a2X,,anXn=kφ(X)三角性:令XYCn,φ(X+Y)=(X+Y)αT=XαT+YαTXαT+YαT=φ(X)+φ(Y)相容性:φ(AX)=(AX)αT=A(XαT)AXαT=Aφ(X)可证,AXVAXV,即矩阵范数与向量范数有相容性
eg

  • F范数与向量2-范数相容: ∥ A x ∥ 2 ≤ ∥ A ∥ F ⋅ ∥ x ∥ 2 \Vert Ax\Vert_2\le \Vert A\Vert_F\cdot\Vert x\Vert_2 Ax2AFx2
  • 总和范数与1-范数, ∞ \infty -范数相容: ∥ A x ∥ 1 ≤ ∥ A ∥ M ⋅ ∥ x ∥ 1 \Vert Ax\Vert_1\le \Vert A\Vert_M\cdot \Vert x \Vert_1 Ax1AMx1 ∥ A x ∥ ∞ ≤ ∥ A ∥ M ⋅ ∥ x ∥ ∞ \Vert Ax\Vert_\infty\le \Vert A\Vert_M\cdot \Vert x\Vert_\infty AxAMx
  • G范数与1-范数, ∞ \infty -范数相容,2-范数相容: ∥ A x ∥ 1 ≤ ∥ A ∥ G ⋅ ∥ x ∥ 1 \Vert Ax\Vert_1\le \Vert A\Vert_G\cdot \Vert x \Vert_1 Ax1AGx1 , ∥ A x ∥ 2 ≤ ∥ A ∥ G ⋅ ∥ x ∥ 2 \Vert Ax\Vert_2\le \Vert A\Vert_G\cdot \Vert x \Vert_2 Ax2AGx2 , ∥ A x ∥ ∞ ≤ ∥ A ∥ G ⋅ ∥ x ∥ ∞ \Vert Ax\Vert_\infty\le \Vert A\Vert_G\cdot \Vert x \Vert_\infty AxAGx
a. 特别生成公式

e 1 = ( 1 0 ⋮ 0 ) e_1=\left(\begin{matrix}1\\0\\\vdots\\0\end{matrix}\right) e1= 100 ,取 e 1 T e^T_1 e1T 作为向量 X X X 的放缩量,将向量范数与矩阵范数建立联系

φ ( X ) = Δ ∥ X e 1 T ∥ V = ∥ X ( 1 , 0 , ⋯   , 0 ) ∥ = ∥ ( x 1 0 ⋯ 0 x 2 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ x n 0 ⋯ 0 ) ∥ ∗ \varphi(X)\overset{\Delta}{=}\Vert Xe_1^T\Vert_V=\Vert X(1,0,\cdots,0)\Vert=\left\Vert \left(\begin{matrix} x_1&0&\cdots&0\\x_2&0&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\x_n&0&\cdots&0\end{matrix}\right)\right\Vert_* φ(X)=ΔXe1TV=X(1,0,,0)= x1x2xn000000 , X = ( x 1 ⋮ x n ) ∈ C n X =\left(\begin{matrix}x_1\\\vdots\\x_n\end{matrix}\right)\in C^n X= x1xn Cn ,且 ∥ X ∥ V \Vert X\Vert_V XV 满足相容性 ∥ A X ∥ V ≤ ∥ A ∥ ∗ ⋅ ∥ X ∥ V \Vert AX\Vert_V\le \Vert A\Vert_*\cdot\Vert X\Vert_{V} AXVAXV A ∈ C n , n A\in C^{n,n} ACn,n X ∈ C n X\in C^n XCn

eg

取 F 范数 ∥ A ∥ = ∥ A ∥ F \Vert A\Vert=\Vert A\Vert_F A=AF ,验证F范数与向量2-范数的相容性
由特别生成公式, ∥ X ∥ V = Δ ∥ X e 1 T ∥ = ∥ ( x 1 0 ⋯ 0 x 2 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ x n 0 ⋯ 0 ) ∥ F = ∣ x 1 ∣ 2 + ∣ x 2 ∣ 2 + ⋯ + ∣ x n ∣ 2 = ∥ X ∥ 2 , 即有 F 范数 ∥ A ∥ F 可产生向量范数 ∥ X ∥ 2 对相容性的验证: ∀ A ∈ C n , n , ∥ A X ∥ 2 = ∥ ( A X ) e 1 T ∥ = ∥ A ( X e 1 T ) ∥ ≤ ∥ A ∥ F ⋅ ∥ X ∥ 2 \begin{aligned} &由特别生成公式,\Vert X\Vert_V\overset{\Delta}{=}\Vert Xe_1^T\Vert=\left\Vert \left(\begin{matrix} x_1&0&\cdots&0\\x_2&0&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\x_n&0&\cdots&0\end{matrix}\right)\right\Vert_F = \sqrt{\vert x_1\vert^2+\vert x_2\vert^2+\cdots+\vert x_n\vert^2}\\ &=\Vert X\Vert_2,即有F范数\Vert A\Vert_F可产生向量范数 \Vert X\Vert_2\\ &对相容性的验证:\\ &\forall A\in C^{n,n},\Vert AX\Vert_2=\Vert (AX)e_1^T\Vert=\Vert A(Xe_1^T)\Vert\le \Vert A\Vert_F\cdot \Vert X\Vert_2 \end{aligned} 由特别生成公式,XV=ΔXe1T= x1x2xn000000 F=x12+x22++xn2 =X2,即有F范数AF可产生向量范数X2对相容性的验证:ACn,n,AX2=(AX)e1T=A(Xe1T)AFX2


取总和范数 ∥ A ∥ M = ∑ ∣ a i j ∣ \Vert A\Vert_M=\sum \vert a_{ij}\vert AM=aij ,写出矩阵范数产生的向量范数,并写出相容性
由特别生成公式 , ∥ X ∥ V = Δ ∥ X e 1 T ∥ = ∥ ( x 1 0 ⋯ 0 x 2 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ x n 0 ⋯ 0 ) ∥ M = ∑ ∣ a i j ∣ = ∥ X ∥ 1 即有相容性: ∥ A X ∥ 1 = ∥ A X e 1 T ∥ ≤ ∥ A ∥ ⋅ ∥ X ∥ 1 = ∥ A ∥ M ⋅ ∥ X ∥ 1 至于 M 范数与 ∞ − 范数相容,则需要其他的生成公式证明 \begin{aligned} &由特别生成公式,\Vert X\Vert_V\overset{\Delta}{=}\Vert Xe_1^T\Vert=\left\Vert \left(\begin{matrix} x_1&0&\cdots&0\\x_2&0&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\x_n&0&\cdots&0\end{matrix}\right)\right\Vert_M=\sum \vert a_{ij}\vert =\Vert X\Vert_1\\ &即有相容性:\Vert AX\Vert_1=\Vert AXe_1^T\Vert\le \Vert A\Vert\cdot\Vert X\Vert_1=\Vert A\Vert_M\cdot \Vert X\Vert_1\\ &至于M范数与\infty-范数相容,则需要其他的生成公式证明 \end{aligned} 由特别生成公式,XV=ΔXe1T= x1x2xn000000 M=aij=X1即有相容性:AX1=AXe1TAX1=AMX1至于M范数与范数相容,则需要其他的生成公式证明


取行范数 ∥ A ∥ ∞ \Vert A\Vert_\infty A ,写出矩阵范数产生的向量范数,并写出相容性
由特别生成公式, ∥ X ∥ V = Δ ∥ X e 1 T ∥ = ∥ ( x 1 0 ⋯ 0 x 2 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ x n 0 ⋯ 0 ) ∥ ∞ = max ⁡ 1 ≤ i ≤ n { ∣ x i ∣ } = ∥ X ∥ ∞ ∥ A X ∥ ∞ ≤ ∥ A ∥ ∞ ∥ X ∥ ∞ \begin{aligned} &由特别生成公式,\Vert X\Vert_V\overset{\Delta}{=}\Vert Xe_1^T\Vert=\left\Vert \left(\begin{matrix} x_1&0&\cdots&0\\x_2&0&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\x_n&0&\cdots&0\end{matrix}\right)\right\Vert_\infty=\max_{1\le i\le n}\{\vert x_i\vert\}=\Vert X\Vert_{\infty}\\ &\Vert AX\Vert_\infty\le\Vert A\Vert_\infty\Vert X\Vert_\infty \end{aligned} 由特别生成公式,XV=ΔXe1T= x1x2xn000000 =1inmax{xi}=XAXAX


取列范数 ∥ A ∥ 1 \Vert A\Vert_1 A1 ,由特别生成公式 ∥ X ∥ V = Δ ∥ X ∥ 1 \Vert X\Vert_V\overset{\Delta}{=}\Vert X \Vert_1 XV=ΔX1 , ∥ A X ∥ 1 ≤ ∥ A ∥ 1 ⋅ ∥ X ∥ 1 \Vert AX\Vert_1 \le \Vert A\Vert_1 \cdot \Vert X \Vert_1 AX1A1X1

7.1.4 谱范不等式

a. 谱半径

ρ ( A ) = m a x { ∣ λ 1 ∣ , ∣ λ 2 ∣ , ⋯   , ∣ λ n ∣ } 为方阵 A = A n × n 的谱半径, 其中,方阵 A 的特征根为 λ ( A ) = { λ 1 , ⋯   , λ n } \begin{aligned} &\rho(A)=max\{\vert \lambda_1\vert,\vert \lambda_2\vert,\cdots,\vert \lambda_n\vert\}为方阵 A=A_{n\times n} 的谱半径,\\ &其中,方阵A的特征根为\lambda(A)=\{\lambda_1,\cdots,\lambda_n\} \end{aligned} ρ(A)=max{λ1,λ2,,λn}为方阵A=An×n的谱半径,其中,方阵A的特征根为λ(A)={λ1,,λn}

eg

在这里插入图片描述

∵ λ 1 = 1 2 , λ 2 = 1 3 , ∴ ρ ( A ) = λ 1 = 1 2 \begin{aligned} &\because \lambda_1=\frac{1}{2},\lambda_2=\frac{1}{3},\therefore \rho(A)=\lambda_1=\frac{1}{2} \end{aligned} λ1=21,λ2=31,ρ(A)=λ1=21


在这里插入图片描述

λ ( A ) = { 2 i , 1 } , ρ ( A ) = 2 \begin{aligned} &\lambda(A)=\{2i,1\},\rho(A)=2 \end{aligned} λ(A)={2i,1},ρ(A)=2

a. 谱半径性质
  • 正性:任一方阵 A n × n A_{n\times n} An×n 必有 ρ ( A ) ≥ 0 \rho(A)\ge 0 ρ(A)0

  • 齐次公式: ρ ( k A ) = ∣ k ∣ ρ ( A ) \rho(kA)=\vert k\vert \rho(A) ρ(kA)=kρ(A)

    可写齐次公式 ρ ( A k ) = 1 ∣ k ∣ ρ ( A ) \rho(\frac{A}{k})=\frac{1}{\vert k\vert}\rho(A) ρ(kA)=k1ρ(A)

    可取正数 k = ρ ( A ) + ϵ , ϵ > 0 k=\rho(A)+\epsilon,\epsilon>0 k=ρ(A)+ϵ,ϵ>0 ,则有 ρ ( A k ) = ρ ( A ρ ( A ) + ϵ ) = 1 ρ ( A ) + ϵ ρ ( A ) < 1 \rho(\frac{A}{k})=\rho(\frac{A}{\rho(A)+\epsilon})=\frac{1}{\rho(A)+\epsilon}\rho(A)<1 ρ(kA)=ρ(ρ(A)+ϵA)=ρ(A)+ϵ1ρ(A)<1

  • 幂公式: ρ ( A k ) = [ ρ ( A ) ] k \rho(A^k)=[\rho(A)]^k ρ(Ak)=[ρ(A)]k

b. 谱范不等式

ρ ( A ) ≤ ∥ A ∥ \rho(A)\le \Vert A\Vert ρ(A)A 对于一切矩阵范数 ∥ A ∥ \Vert A\Vert A 成立

  • SP:若 A 是正规阵,则 ρ ( A ) = ∥ A ∥ 2 \rho(A)=\Vert A\Vert_2 ρ(A)=A2
  • ρ ( A ) = lim ⁡ k → ∞ ∥ A k ∥ 1 k \rho(A)=\lim_{k\rightarrow \infty}\limits\Vert A^k\Vert^{\frac{1}{k}} ρ(A)=klimAkk1

证明:
λ ( A ) = { λ 1 , λ 2 , ⋯   , λ n } , λ 1 = m a x { ∣ λ 1 ∣ , ⋯   , ∣ λ n ∣ } = ρ ( A ) 取特根 X ≠ 0 , 使 A X = λ 1 X , 令矩阵 B = ( X , X , ⋯   , X ) n × n ≠ 0 可知 A B = ( A X , ⋯   , A X ) = λ 1 B , ∣ λ 1 ∣ ∥ B ∥ = ∥ A B ∥ ≤ ∥ A ∥ ⋅ ∥ B ∥ ,且 ∥ B ∥ > 0 ∴ ∣ λ 1 ∣ ≤ ∥ A ∥ , 由谱半径定义得: ρ ( A ) = ∥ A ∥ \begin{aligned} &\lambda(A)=\{\lambda_1,\lambda_2,\cdots,\lambda_n\} ,\lambda_1=max\{\vert\lambda_1\vert,\cdots,\vert \lambda_n\vert\} =\rho(A)\\ &取特根X\neq 0,使AX=\lambda_1X,令矩阵B=\left(X,X,\cdots,X\right)_{n\times n}\neq 0\\ &可知AB=(AX,\cdots,AX)=\lambda_1B,\vert \lambda_1\vert\Vert B\Vert=\Vert AB\Vert\le \Vert A\Vert\cdot\Vert B\Vert,且\Vert B\Vert>0\\ &\therefore \vert \lambda_1\vert \le \Vert A\Vert,由谱半径定义得:\rho(A)=\Vert A\Vert \end{aligned} λ(A)={λ1,λ2,,λn}λ1=max{λ1,,λn}=ρ(A)取特根X=0,使AX=λ1X,令矩阵B=(X,X,,X)n×n=0可知AB=(AX,,AX)=λ1B,λ1∣∥B=ABAB,且B>0λ1A,由谱半径定义得:ρ(A)=A
证明2:
任取矩阵范数 ∥ A ∥ , 产生向量范数 ∥ X ∥ , 且 ∥ A X ∥ ≤ ∣ A ∥ ⋅ ∥ X ∥ 任取 A 的特征值 λ , 有特向 X ≠ 0 , 使 A X = λ X 则 ∣ λ ∣ ∥ X ∥ = ∥ λ X ∥ = ∥ A X ∥ ≤ ∥ A ∥ ⋅ ∥ X ∥ , 且 ∥ X ∥ > 0 ∴ ∣ λ ∣ ≤ ∥ A ∥ ⇒ ρ ( A ) ≤ ∥ A ∥ \begin{aligned} &任取矩阵范数 \Vert A\Vert,产生向量范数\Vert X\Vert,且 \Vert AX\Vert\le \vert A\Vert\cdot\Vert X\Vert\\ &任取A的特征值\lambda,有特向X\neq 0,使 AX=\lambda X\\ &则\vert \lambda\vert\Vert X\Vert=\Vert \lambda X\Vert=\Vert AX\Vert\le \Vert A\Vert\cdot \Vert X\Vert,且 \Vert X\Vert>0\\ &\therefore \vert \lambda\vert\le \Vert A\Vert\Rightarrow \rho(A)\le \Vert A\Vert \end{aligned} 任取矩阵范数A,产生向量范数X,AXAX任取A的特征值λ,有特向X=0,使AX=λXλ∣∥X=λX=AXAX,X>0λAρ(A)A

在这里插入图片描述

c. 小范数定理

A ∈ C n , n A\in C^{n,n} ACn,n 固定,任取很小正数 ϵ > 0 \epsilon>0 ϵ>0 ,则有矩阵范数 ∥ ∙ ∥ ϵ \Vert \bullet\Vert_\epsilon ϵ ,使 ∥ A ∥ ϵ ≤ ρ ( A ) + ϵ \Vert A\Vert_\epsilon\le \rho(A)+\epsilon Aϵρ(A)+ϵ

证明小范数定理

新范数公式:固定可逆阵 P = P n × n P=P_{n\times n} P=Pn×n ∥ A ∥ \Vert A\Vert A 为矩阵范数 A ∈ C n × n A\in C^{n\times n} ACn×n ,令 φ ( A ) = ∥ P − 1 A P ∥ \varphi(A)=\Vert P^{-1}AP\Vert φ(A)=P1AP ,则 φ ( A ) \varphi(A) φ(A) 为矩阵范数,记新范数为 φ ( A ) = ∥ A ∥ P \varphi(A)=\Vert A\Vert_P φ(A)=AP φ ( A ) = ∥ A ∥ 新 \varphi(A)=\Vert A\Vert_新 φ(A)=A

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

推论

ρ ( A ) < 1 \rho(A)<1 ρ(A)<1 ,则有某个范数 ∥ A ∥ ϵ < 1 \Vert A\Vert_\epsilon<1 Aϵ<1
∵ ρ ( A ) < 1 ,则 1 − ρ ( A ) > 0 , 取 ϵ > 0 很小,任意 ϵ < 1 2 [ 1 − ρ ( A ) ] 可知 ρ ( A ) + ϵ < ρ ( A ) + 1 2 [ 1 − ρ ( A ) ] = 1 2 [ 1 + ρ ( A ) ] < 1 , 由小范数定理, ∃ ∥ A ∥ ϵ < ρ ( A ) + ϵ < 1 \begin{aligned} &\because \rho(A)<1,则1-\rho(A)>0,取\epsilon>0很小,任意\epsilon <\frac{1}{2}[1-\rho(A)]\\ &可知 \rho(A)+\epsilon<\rho(A)+\frac{1}{2}[1-\rho(A)] = \frac{1}{2}[1+\rho(A)]<1,\\ &由小范数定理,\exist\Vert A\Vert_\epsilon<\rho(A)+\epsilon<1 \end{aligned} ρ(A)<1,则1ρ(A)>0,ϵ>0很小,任意ϵ<21[1ρ(A)]可知ρ(A)+ϵ<ρ(A)+21[1ρ(A)]=21[1+ρ(A)]<1,由小范数定理,∃∥Aϵ<ρ(A)+ϵ<1

总结

给定方阵 A n × n A_{n\times n} An×n ∀ ϵ > 0 \forall \epsilon >0 ϵ>0 ,有某个范数 ∥ ∙ ∥ ϵ < ρ ( A ) + ϵ \Vert \bullet\Vert_\epsilon<\rho(A)+\epsilon ϵ<ρ(A)+ϵ

SP:若 ρ ( A ) < 1 \rho(A)<1 ρ(A)<1 ,则有某范数 ∥ A ∥ ϵ < 1 \Vert A\Vert_\epsilon<1 Aϵ<1

A = A n × n A=A_{n\times n} A=An×n 为单阵(相似与对角阵) ,则存在矩阵范数 ∥ X ∥ P , X ∈ C n × n \Vert X\Vert_P,X\in C^{n\times n} XP,XCn×n ,使得 $\Vert A\Vert_P=\rho(A) $

e. 谱范的应用——矩阵绝对收敛判定

若方阵A满足 A k → 0 ( k → ∞ ) A^k\rightarrow 0(k\rightarrow \infty) Ak0(k) ,即 lim ⁡ k → ∞ A k = 0 \lim_{k\rightarrow\infty}\limits A^k=0 klimAk=0 ,称A为收敛阵

充要条件

  1. lim ⁡ k → ∞ A k = 0    ⟺    ∥ A k ∥ = 0 \lim_{k\rightarrow\infty}\limits A^k=0\iff \Vert A^k\Vert=0 klimAk=0Ak=0

    证明:
    ∵ lim ⁡ k → ∞ A k = 0    ⟺    A k 中每个元素 a i j ( k ) → 0    ⟺    ∥ A k ∥ M = ∑ i , j ∣ a i j ( k ) ∣ → k → ∞ 0 且由矩阵范数等价性,有 lim ⁡ k → ∞ A k = 0    ⟺    ∥ A k ∥ → k → ∞ 0 \begin{aligned} &\because \lim_{k\rightarrow \infty}A^k=0\iff A^k中每个元素 a_{ij}^{(k)}\rightarrow 0\iff \Vert A^k\Vert_M=\sum_{i,j}\vert a_{ij}^{(k)}\vert\xrightarrow{k\rightarrow \infty} 0\\ &且 由矩阵范数等价性,有\lim_{k\rightarrow \infty}\limits A^k=0\iff \Vert A^k\Vert\xrightarrow{k\rightarrow \infty}0 \end{aligned} klimAk=0Ak中每个元素aij(k)0AkM=i,jaij(k)k 0且由矩阵范数等价性,有klimAk=0Akk 0

  2. ρ ( A ) < 1    ⟺    ∥ A k ∥ → 0 ( k → ∞ ) ⇒ A k → 0 ( k → ∞ ) \rho(A)<1\iff \Vert A^k\Vert\rightarrow 0 (k\rightarrow \infty)\Rightarrow A^k\rightarrow 0(k\rightarrow \infty) ρ(A)<1Ak0(k)Ak0(k)

    • 充分性:

      ρ ( A ) < 1 \rho(A)<1 ρ(A)<1,则 ∃ \exist 某小范数 ∥ A ∥ ϵ < 1 ⇒ ∥ A k ∥ ϵ ≤ ∥ A ∥ ϵ k → 0    ⟺    ∥ A k ∥ ϵ → 0 \Vert A\Vert_\epsilon<1\Rightarrow \Vert A^k\Vert_\epsilon\le \Vert A\Vert^k_\epsilon\rightarrow 0\iff \Vert A^k\Vert_\epsilon\rightarrow 0 Aϵ<1AkϵAϵk0Akϵ0

      由于范数等价性,对于所有范数都有 ∥ A k ∥ → k → ∞ 0 \Vert A^k\Vert\xrightarrow{k\rightarrow \infty}0 Akk 0

    • 必要性:

      在这里插入图片描述

充分条件

  • 某一范数 ∥ A ∥ < 1 ⇒ ∥ A k ∥ → 0 ( k → ∞ ) \Vert A\Vert<1\Rightarrow \Vert A^k\Vert\rightarrow 0(k\rightarrow \infty) A<1Ak0(k)

    若范数 ∥ A ∥ < 1 ⇒ ∥ A k ∥ ≤ ∥ A ∥ k \Vert A\Vert<1\Rightarrow \Vert A^k\Vert\le \Vert A\Vert^k A<1AkAk 已知 ∥ A ∥ < 1 ⇒ ∥ A ∥ k → k → ∞ 0 \Vert A\Vert<1\Rightarrow \Vert A\Vert^k\xrightarrow{k\rightarrow \infty} 0 A<1Akk 0 ,则 ⇒ ∥ A k ∥ → 0 ⇒ A k → k → ∞ 0 , A 为收敛阵 \Rightarrow \Vert A^k\Vert\rightarrow 0\Rightarrow A^k\xrightarrow{k\rightarrow\infty} 0,A为收敛阵 Ak0Akk 0A为收敛阵

总结

ρ ( A ) < 1    ⟺    A k → 0 ( k → ∞ ) \rho(A)<1\iff A^k\rightarrow 0(k\rightarrow \infty) ρ(A)<1Ak0(k) ,A为收敛阵

某一范数 ∥ A ∥ < 1 ⇒ A k → 0 ( k → ∞ ) \Vert A\Vert<1\Rightarrow A^k\rightarrow 0(k\rightarrow \infty) A<1Ak0(k) ,A为收敛阵

纽曼公式(矩阵级数收敛公式)
  1. ρ ( A ) < 1 \rho(A)<1 ρ(A)<1 ,则 I + A + A 2 + ⋯ + A k = ( I − A ) − 1 I+A+A^2+\cdots+A^k=(I-A)^{-1} I+A+A2++Ak=(IA)1

    ρ ( A ) ≥ 1 \rho(A)\ge 1 ρ(A)1 ,则 I + A + A 2 + ⋯ + A k I+A+A^2+\cdots+A^k I+A+A2++Ak 发散,无意义

    在这里插入图片描述

  2. 若某范数 ∥ A ∥ < 1 \Vert A\Vert<1 A<1 ,则 I + A + A 2 + ⋯ + A k = ( I − A ) − 1 I+A+A^2+\cdots+A^k=(I-A)^{-1} I+A+A2++Ak=(IA)1

证明
( 1 ) 已知 ρ ( A ) < 1 ⇒ A k → 0 ( k → ∞ ) ( I − A ) ( I + A + A 2 + ⋯ + A k ) = I − A k + 1 当 k → ∞ , ⇒ ( I − A ) ( I + A + A 2 + ⋯ + A k ) = I 故可得 ( I − A ) − 1 = I + A + A 2 + ⋯ + A k \begin{aligned} &(1)已知\rho(A)<1\Rightarrow A^k\rightarrow 0(k\rightarrow \infty) \\ &(I-A)(I+A+A^2+\cdots+A^k)=I-A^{k+1}\\ &当k\rightarrow \infty,\Rightarrow (I-A)(I+A+A^2+\cdots+A^k)=I\\ &故可得 (I-A)^{-1}=I+A+A^2+\cdots+A^k \end{aligned} (1)已知ρ(A)<1Ak0(k)(IA)(I+A+A2++Ak)=IAk+1k,(IA)(I+A+A2++Ak)=I故可得(IA)1=I+A+A2++Ak


( 2 ) 若 ∥ A ∥ < 1 , 则 ρ ( A ) ≤ ∥ A ∥ < 1 , 由 ( 1 ) 结论,可知结论成立 \begin{aligned} &(2)若 \Vert A\Vert<1,则\rho(A)\le \Vert A\Vert <1,由(1)结论,可知结论成立 \end{aligned} (2)A<1,ρ(A)A<1,(1)结论,可知结论成立

eg

在这里插入图片描述

∥ A ∥ 1 = 4 3 , ∥ A ∥ ∞ = 3 2 , λ ( A ) = { 1 2 , 1 3 } , ρ ( A ) < 1 故 ∑ k = 0 ∞ A k = ( I − A ) − 1 = ( 1 2 − 1 0 2 3 ) − 1 = 3 ( 2 3 1 0 1 2 ) = ( 2 3 0 3 2 ) \begin{aligned} &\Vert A\Vert_1=\frac{4}{3},\Vert A\Vert_\infty=\frac{3}{2},\lambda(A)=\{\frac{1}{2},\frac{1}{3}\} ,\rho(A)<1\\ &故\sum_{k=0}\limits^\infty A^k=(I-A)^{-1}=\left( \begin{matrix} \frac{1}{2}&-1\\0&\frac{2}{3} \end{matrix} \right)^{-1}=3\left( \begin{matrix} \frac{2}{3}&1\\0&\frac{1}{2} \end{matrix} \right)=\left( \begin{matrix} 2&3\\0&\frac{3}{2} \end{matrix} \right) \end{aligned} A1=34,A=23,λ(A)={21,31}ρ(A)<1k=0Ak=(IA)1=(210132)1=3(320121)=(20323)


在这里插入图片描述


在这里插入图片描述

∥ ( I − A ) − 1 ∥ \Vert (I-A)^{-1}\Vert (IA)1 计算

A ∈ C n × n A\in C^{n\times n} ACn×n ∥ A ∥ \Vert A\Vert A 是矩阵范数,若 ∥ A ∥ < 1 \Vert A\Vert<1 A<1 ,则 I − A I-A IA 为非奇异阵(可逆),且 ∥ ( I − A ) − 1 ∥ ≤ ∥ I ∥ 1 − ∥ A ∥ \Vert (I-A)^{-1}\Vert\le \frac{\Vert I\Vert}{1-\Vert A\Vert} (IA)11AI

在这里插入图片描述

在这里插入图片描述

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AmosTian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值