凯莱-哈密顿定理

本文详细介绍了凯莱-哈密顿定理,包括引理1及其证明,准素分解定理的推论及证明,最终证明了线性变换的特征多项式与该变换相乘的结果为零矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

凯莱-哈密顿定理

设σ是n维向量空间V上一个线性变换,f(x)是σ的特征多项式.那么f(σ) = θ.

证明

引理1

τ 是n维向量空间V上一个线性变换, ξ ∈ V ξ\in V ξV,存在正整数s,使得 τ s ( ξ ) = 0 τ^s(ξ) = 0 τs(ξ)=0, 而 τ s − 1 ( ξ ) ≠ 0 τ^{s-1}(ξ) \neq 0 τs1(ξ)=0,那么 ξ , τ ( ξ ) , . . . , τ s − 1 ( ξ ) ξ,τ(ξ),...,τ^{s-1}(ξ) ξ,τ(ξ),...,τs1(ξ)线性无关。

引理1证明

反证法证明, 假设 ξ , τ ( ξ ) , . . . , τ s − 1 ( ξ ) ξ,τ(ξ),...,τ^{s-1}(ξ) ξ,τ(ξ),...,τs1(ξ)线性相关
那么 k 1 ξ + k 2 τ ( ξ ) + . . . + k s τ s − 1 ( ξ ) = 0 k_1ξ+k_2τ(ξ)+...+k_{s}τ^{s-1}(ξ) = 0 k1ξ+k2τ(ξ)+...+ksτs1(ξ)=0, 如果最小的t,使得 k t > 0 k_t>0 kt>0
那么 0 = τ s − t ( k t τ t − 1 ( ξ ) + . . . + k s τ s − 1 ( ξ ) ) = k t τ s − 1 ( ξ ) 0 = τ^{s-t}(k_t τ^{t-1}(ξ)+...+k_{s}τ^{s-1}(ξ)) = k_tτ^{s-1}(ξ) 0=τst(ktτt1(ξ)+...+ksτs1(ξ))=ktτs1(ξ),那么 k t = 0 k_t = 0 kt=0, 矛盾, 所以假设不成立,所以 ξ , τ ( ξ ) , . . . , τ s − 1 ( ξ ) ξ,τ(ξ),...,τ^{s-1}(ξ) ξ,τ(ξ),...,τ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值