凯莱-哈密顿定理
设σ是n维向量空间V上一个线性变换,f(x)是σ的特征多项式.那么f(σ) = θ.
证明
引理1
τ 是n维向量空间V上一个线性变换, ξ ∈ V ξ\in V ξ∈V,存在正整数s,使得 τ s ( ξ ) = 0 τ^s(ξ) = 0 τs(ξ)=0, 而 τ s − 1 ( ξ ) ≠ 0 τ^{s-1}(ξ) \neq 0 τs−1(ξ)=0,那么 ξ , τ ( ξ ) , . . . , τ s − 1 ( ξ ) ξ,τ(ξ),...,τ^{s-1}(ξ) ξ,τ(ξ),...,τs−1(ξ)线性无关。
引理1证明
反证法证明, 假设 ξ , τ ( ξ ) , . . . , τ s − 1 ( ξ ) ξ,τ(ξ),...,τ^{s-1}(ξ) ξ,τ(ξ),...,τs−1(ξ)线性相关
那么 k 1 ξ + k 2 τ ( ξ ) + . . . + k s τ s − 1 ( ξ ) = 0 k_1ξ+k_2τ(ξ)+...+k_{s}τ^{s-1}(ξ) = 0 k1ξ+k2τ(ξ)+...+ksτs−1(ξ)=0, 如果最小的t,使得 k t > 0 k_t>0 kt>0,
那么 0 = τ s − t ( k t τ t − 1 ( ξ ) + . . . + k s τ s − 1 ( ξ ) ) = k t τ s − 1 ( ξ ) 0 = τ^{s-t}(k_t τ^{t-1}(ξ)+...+k_{s}τ^{s-1}(ξ)) = k_tτ^{s-1}(ξ) 0=τs−t(ktτt−1(ξ)+...+ksτs−1(ξ))=ktτs−1(ξ),那么 k t = 0 k_t = 0 kt=0, 矛盾, 所以假设不成立,所以 ξ , τ ( ξ ) , . . . , τ s − 1 ( ξ ) ξ,τ(ξ),...,τ^{s-1}(ξ) ξ,τ(ξ),...,τ