论文解读 Learning Data Augmentation Strategies for Object Detection

Learning Data Augmentation Strategies for Object Detection

今天介绍一篇来自 Google Brain 团队的工作 “Learning Data Augmentation Strategies for Object Detection”,作者是 Barret Zoph, Ekin D. Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon Shlens, Quoc V. Le。

这篇文章可以看做是之前 AutoAugment 的扩展,在检测任务上搜索一个好的数据增强方案。作者在 AmoebaNet + NAS-FPN 上用搜出来的数据增强方法能达到 50.7 的 COCO validation mAP。

Motivation

首先回顾一下 AutoAugment:对于图像分类任务通常要用到一系列的数据增强手段,比如左右翻转 Flip,对比度/饱和度增强,Resize,等等。使用哪些数据增强方法、每个方法使用几次、每个方法被使用到的概率、方法之间的顺序可以构成一个庞大的搜索空间,然后用 AutoML 的方法搜一个不错的组合,一般要比人工设计的数据增强策略要效果好。

Method

而在这篇 Paper 中,目标任务的任务从分类变成了检测,首先作者提出一个观点:在检测任务中如果直接采用分类任务的数据增强策略,带来的涨点是有限的。检测任务上有一些和框的位置有关的数据增强方法,比如旋转角度,仿射变换,是分类任务上没有的。因此有必要针对检测任务专门搜最优的数据增强方法。

作者将检测任务上的数据增强策略搜索看成了一个离散优化问题(discrete optimization problem)。

首先作者定义了22个数据增强运算,包括对颜色、几何变换、框位置的变换进行增强。官方的 TensorFlow 代码可以在这里找到。一些运算的介绍如下表所示:

有一些数据增强运算,比如 Mixup,Manifold Mixup,Dropblock 作者发现加进去会掉点,就没有采用。

有了这22个数据增强运算,怎么构成搜索空间呢?作者规定了最终的数据增强策略由 K 个子策略 (sub-policies)组成,每个子策略包含 N 个数据增强运算。每个运算又包含两个超参数:被用到的概率 P 和强度 M。P 和 M 被离散化为6份。训练的时候,每次抽一个子策略,然后把这个子策略包含的数据增强运算应用到图片上。

这样整个搜索空间的大小为:
( 22 × P ×

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值