【论文笔记】:Learning Data Augmentation Strategies for Object Detection

谷歌大脑团队研究了数据增强对目标检测的影响,提出通过学习数据增强策略提高目标检测模型性能,尤其是在小数据集上。他们创建了一系列转换,只在训练时使用,不改变测试时模型的行为。实验表明,这种方法在不同数据集、架构和检测算法中表现良好,尤其对小目标检测有显著提升。同时,与其他正则化技术结合并未显示额外好处。
摘要由CSDN通过智能技术生成

&Title:

&Summary

这个方法是谷歌大脑Quoc Le团队,又训练出的一个目标检测模型,通过特别的数据扩增策略再用自动扩增来的新数据集训练目标检测模型,使该算法在针对小数据集的目标检测上取得了很好的效果。

作者的切入点是当前的数据增强都是从分类任务引入的,但是分类任务的增强不一定适用检测任务。因为回归检测任务的样本远不如分类多,所以需要进一步的增强。
理解:作者所说的不匹配性无非就是指检测的数据增强形式应该更加丰富多样,而不是简单的几个翻转平移仿射啥的。

提出办法是采用可学习的数据增强方式

&Research Objective

在这项工作中,作者研究了数据增加对目标检测的影响

首先证明了从图像分类中借用的数据增强操作可能有助于训练检测模型,但改进是有限的。因此,作者研究如何学习专业的数据增强策略提高通用性能的检测模型。重要的是,这些增强策略只会影响训练,并且在评估过程中不会改变一个经过训练的模型。

&Problem Statement

最近的工作表明,从数据中学习最佳政策,而不是手工设计数据增加战略,可以大大改进图像分类模型的推广性能[22、45、8、33、31、54、2、43、37],5]。对于图像分类模型,可以通过一个可以从头创建数据的学习生成器[33、31、54、2、43]或通过学习适用于现有训练集样本的一组转换[5]来增加数据。[37]。对于对象检测模型而言,增加数据量更为重要,因为收集标记的数据用于检测成本更高,普通检测数据集的示例比图像分类数据集要少得多。然而,我们还不清楚如何增加数据:我们是否应该从图像分类直接重用数据增加策略?我们应该如何处理bounding box和包围箱的内容?

&Method(s)

文章采取了一种自动化的方法来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值