Learning Data Augmentation Strategies for Object Detection(翻译)

      这个方法是谷歌大脑Quoc Le团队,又训练出的一个目标检测模型,通过特别的数据扩增策略,再用自动扩增来的新数据集训练目标检测模型,使该算法在针对小数据集的目标检测上取得了很好的效果。该论文和开源代码如下:

论文传送门:
https://arxiv.org/abs/1906.11172

代码传送门:
https://github.com/tensorflow/tpu/tree/master/models/official/detection

这里是对这篇论文的简单介绍。为方便自己阅读,制作了如下翻译版,有不对的地方请指点。


摘要

数据增强是深度学习模型训练的关键组成部分。虽然数据增强已被证明能显著改善图像分类,但对于目标检测来说它的潜力尚未被彻底的研究。鉴于对图像进行标注以进行目标检测的额外成本,对计算机视觉任务来说,数据增强可能更为重要。在这项工作中,我们研究了数据增加对目标检测的影响。我们首先证明了从图像分类中借用的数据增强操作可能有助于训练检测模型,但改进是有限的。因此,我们研究如何学习,专业的数据增强策略提高通用性能的检测模型。重要的是,这些增强策略只会影响训练,并且在评估过程中不会改变一个经过训练的模型。coco数据集上的实验表明,优化后的数据扩增策略提高了+2.3mAP,并允许单一推理模型达到50.7mAP。更重要的是,在COCO上发现的最佳策略可以不变地转移到其他检测数据集和模型中,以提高预测的准确性。例如,用coco确定的最佳增强策略将pascal-voc提高了+2.7mAP以上。我们的研究结果还表明,即使在考虑强基线的情况下,学习到的增强策略也优于最先进的结构正则化方法。学习策略的训练代码可在网上查阅。

一、介绍

深层的神经网络是强大的机器学习系统,如果在大量数据上进行训练,它们的工作效果最好。为了增加神经网络的训练数据量,许多工作都致力于创造更好的数据增加策略[3,42,21]。在图像域中,常见的增强包括将图像translating(翻译)成几个像素,或水平翻转图像。大多数现代图像分类器都配有手工制作的数据增强策略[21, 44, 16, 18, 56].(论文21的概括说明

 最近的工作表明,从数据中学习最佳政策,而不是手工设计数据增加战略,可以大大改进图像分类模型的推广性能[22、45、8、33、31、54、2、43、37],5]。对于图像分类模型,可以通过一个可以从头创建数据的学习生成器[33、31、54、2、43]或通过学习适用于现有训练集样本的一组转换[5]来增加数据。[37]。对于对象检测模型而言,增加数据量更为重要,因为收集标记的数据用于检测成本更高,普通检测数据集的示例比图像分类数据集要少得多。然而,我们还不清楚如何增加数据:我们是否应该从图像分类直接重用数据增加策略?我们应该如何处理bounding box和包围箱的内容?

在本工作中,我们创建了一组简单的转换,可以应用于对象检测数据集,然后将这些转换转移到其他检测数据集和体系结构。这些转换只在训练期间使用,而不是测试时间。我们的转换包括那些可以应用到整个图像而不影响包围框位置的转换(例如从图像分类模型中借用的颜色转换),在改变包围框位置的同时影响到整个图像的转换(例如,翻译或剪切整个图像),以及只应用于包围框中的对象的转换。当转换的数量变大时,手动有效地组合它们就变得不平凡了。因此,我们搜索专为对象检测数据集设计的策略。实验表明,该方法在不同的数据集、数据集大小、主干体系结构和检测算法中具有很好的性能。另外,我们还研究了增强数据策略的性能如何依赖于搜索空间中包含的操作数量,以及增强技术的有效性如何随着数据集大小的变化而变化。

总之,我们的主要贡献如下:

  • 设计并实现一种搜索方法,通过将新的运算与边界框标注相结合,组合和优化对象检测问题的数据增强策略。
  • 在一系列检测体系结构和数据集中,显示出交叉验证的准确性的持续增长。特别是,对于单个模型,我们超越了CoCO的最新成果,并在Pascal VOC目标检测上取得了竞争的结果。
  • 通过提供一个强大的正则化,以避免在小对象
  • 4
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值