快速压缩跟踪(fast compressive tracking)(CT)算法实践

在这里插入图片描述
CT算法详细解析可以参考:快速压缩跟踪(fast compressive tracking)(CT)算法剖析
论文源码在作者主页上下载,我测试了一下,主要是比较一下各个算法,看如何往嵌入式上移植。
程序也比较简单,论文也值得看一下。

int main(int argc, char * argv[])
{
	CompressiveTracker ct;
	Mat grayImg;
	VideoCapture cap;
	char c;
	cap.open("E:\\dataSet\\xinpingtai_video\\xidian.mp4");
	//cap.open("E:\\dataSet\\155\\test1.mp4");
	//cap.open("E:\\dataSet\\zx\\sd2 截取视频.mp4"); 
	// get bounding box
	cap >> frame;

	//blur(frame, frame, Size(3, 3));
	namedWindow("tracker", CV_WINDOW_NORMAL);
	Rect roi = selectROI("tracker", frame, true, false);
	ct.init(grayImg, roi);
	long frameNum = 0;
	long frameSum = cap.get(CAP_PROP_FRAME_COUNT);
	while (frameNum < frameSum)
	{
		cap >> frame;
		frameNum++;
		clock_t begin = clock();
		cvtColor(frame, grayImg, CV_RGB2GRAY);
		ct.processFrame(grayImg, roi);// Process frame
		rectangle(frame, roi, Scalar(255, 0, 0));//能够实时显示在画矩形窗口时的痕迹
		clock_t end = clock();
		cout << (double)(end - begin) / 1000 << endl;
		imshow("tracker", frame);
		if (waitKey(10) == 'r') {
			Rect roi = selectROI("tracker", frame, true, false);
			// initialization
			ct.init(grayImg, roi);
		}
		if (waitKey(10) == 27)
			break;
		imshow("frame", frame);
	}
	return 0;
	}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dx0014

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值