快速压缩跟踪(fast compressive tracking)(CT)算法剖析

本文介绍了快速压缩跟踪(Fast Compressive Tracking, FCT)算法,对比了生成跟踪和判别跟踪算法的优缺点。FCT通过获取目标区域特征、使用稀疏测量矩阵进行降维处理以及应用贝叶斯分类器实现高效跟踪。文章详细阐述了特征提取、降维方法和分类过程,旨在提高跟踪算法的鲁棒性。" 111014801,10296899,树莓派Python OpenCV图像与视频操作教程,"['树莓派开发', 'Python编程', '计算机视觉', 'OpenCV教程']
摘要由CSDN通过智能技术生成

本文为原创,转载请注明出处:http://blog.csdn.net/autocyz/article/details/44490009

Fast Compressive Tracking

(快速压缩跟踪)

虽然目前有很多种的跟踪算法,但是由于姿态的变化、光照的变化、障碍物等原因的存在,导致很多算法的鲁棒性不好。

目前比较主流的跟踪算法有两种,generative  tracking algorithms(生成跟踪算法)和discriminative algorithms(判别跟踪算法)。

生成跟踪算法,顾名思义边生成边跟踪。即对这一帧的样本进行学习,将学习的结果作为下一帧的分类器,达到边学习跟踪,边跟踪边学习的效果。这种跟踪算法的缺点是在视频的前几帧,样本量较少,因此大部分的算法要求视频中目标在视频的前面变化不大。如果目标变化较大,会产生漂移现象。

判别算法认为跟踪就是一个二分类器的问题,其目的是要找到一个将目标从背景中区分出的边界。但是这种算法只用了一个正样本和少量的负样本来跟新分类器。当特征模板含有噪声或者位置偏离时,便会出现漂移现象。

作者的算法:



评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值