本文为原创,转载请注明出处:http://blog.csdn.net/autocyz/article/details/44490009
Fast Compressive Tracking
(快速压缩跟踪)
虽然目前有很多种的跟踪算法,但是由于姿态的变化、光照的变化、障碍物等原因的存在,导致很多算法的鲁棒性不好。
目前比较主流的跟踪算法有两种,generative tracking algorithms(生成跟踪算法)和discriminative algorithms(判别跟踪算法)。
生成跟踪算法,顾名思义边生成边跟踪。即对这一帧的样本进行学习,将学习的结果作为下一帧的分类器,达到边学习跟踪,边跟踪边学习的效果。这种跟踪算法的缺点是在视频的前几帧,样本量较少,因此大部分的算法要求视频中目标在视频的前面变化不大。如果目标变化较大,会产生漂移现象。
判别算法认为跟踪就是一个二分类器的问题,其目的是要找到一个将目标从背景中区分出的边界。但是这种算法只用了一个正样本和少量的负样本来跟新分类器。当特征模板含有噪声或者位置偏离时,便会出现漂移现象。
作者的算法: