win10+cuda11.8+opencv4.5.5使用cuda运行yolov5

本文介绍了在Windows10系统中,如何配置CUDA11.8、VisualStudio2019和OpenCV4.5.5,利用GPU(如4080)进行加速。通过使用cmake-gui,去掉gstreamer和非必要的测试程序,成功配置CUDA并生成项目。最终,展示了CUDA加速下OpenCV相对于CPU的性能提升,大约10倍速度增益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境:win10 cuda11.8(尝试使用最新的12.1无法安装)
Vs2019(尝试Vs2015无法源码安装)opencv4.5.5
cmake-gui 3.26.4,电脑GPU是4080
1、安装Vs2019和cuda11.8,下载opencv4.5.5和对应的opencv_contrib-4.5.5,下载cmake的安装包。
2、下载opencv4.5.5的源码,安装anaconda3。上面的安装可以找网上的资源,较好配置。
3、打开cmake-gui,使用vs2019进行配置,x64,并按照下图进行选择请添加图片描述
在这里插入图片描述
这里我把gstreamer给去掉了,目前用不到
在这里插入图片描述
extra是安装cuda必备的选项
在这里插入图片描述

这里我把test的程序都去掉了,也可以加上
在这里插入图片描述
在这里插入图片描述

cuda选上后,然后点击configure,编译无错后,选择
在这里插入图片描述
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite deviceQuery这里可以查询
此时可能会出现.cache下载不了的情况,可以使用网上对应的资源。
生成后,点击open_project,生成解决方案即可,时间较长,一般不会报错。
可以看到opencv使用cuda的速度相比较于cpu要快10倍
在这里插入图片描述
使用GPU的速度
在这里插入图片描述

<think>好的,我现在需要帮助用户解决在Visual Studio中配置CUDA 11.8环境的问题。首先,用户提供的引用内容提到了使用mklink命令创建符号链接,以及参考了其他博客和配置路径。我需要结合这些信息,整理出一个步骤清晰的配置指南。 首先,我应该确认用户的操作系统和Visual Studio版本。根据引用中的示例,用户可能使用的是Windows系统,比如Windows 10,而Visual Studio版本可能是2019或2022。但用户现在想配置的是CUDA 11.8,需要明确支持该版本的Visual Studio版本。通常CUDA 11.8应该支持VS 2019和2022,但需要检查官方文档以确保兼容性。 接下来,步骤大概包括安装CUDA Toolkit 11.8,配置Visual Studio的项目设置,以及可能的符号链接问题。引用[1]提到使用mklink命令创建目录链接,这可能是因为CUDA安装路径与VS预期的路径不一致,需要手动创建符号链接。这可能是配置过程中的关键步骤,需要详细说明。 然后,我需要参考用户提供的引用内容,特别是引用[1]中的命令行指令。用户可能需要将CUDA的VS集成部分链接到正确的目录。例如,将CUDA 11.8的Wizards目录链接到VS 2019的Extensions下。这里要注意路径中的版本号和VS的版本号是否对应,比如“15”可能对应VS 2017,而VS 2019或2022可能需要不同的版本号。这点可能需要进一步确认,避免用户出错。 另外,引用[3]提到了CUDA的include路径,说明在配置项目属性时,需要包含正确的头文件和库文件路径。因此,在配置VS项目时,需要添加包含目录、库目录,以及附加依赖项,比如cudart.lib等。 可能的问题点包括:安装CUDA Toolkit时的选项是否正确,是否安装了与VS版本对应的组件;符号链接命令的正确使用,特别是路径中的空格需要用引号包裹;以及项目属性中的平台设置(x64)是否正确。 需要确保每一步都清晰,并提示用户验证安装是否成功,例如创建测试项目,运行简单的CUDA代码,使用nvcc编译等。此外,用户可能会遇到环境变量的问题,需要检查PATH是否包含CUDA的bin和lib目录。 最后,根据用户的要求,生成相关问题,例如如何验证配置是否成功,或者如何处理常见错误,这些都需要考虑进去。同时,引用标记需要正确添加,确保引用的内容对应到正确的来源。</think>以下是在Visual Studio中配置CUDA 11.8环境的步骤说明: ### 1. 安装CUDA Toolkit 11.8 - 访问[NVIDIA CUDA下载页面](https://developer.nvidia.com/cuda-toolkit-archive),选择CUDA 11.8版本 - 下载后运行安装程序,**自定义安装**时勾选以下组件: - `CUDA`核心组件(必须) - `Visual Studio Integration`(与VS版本匹配的插件) - `Nsight Compute`和`Nsight Systems`(调试工具) ### 2. 创建符号链接(解决路径不匹配问题) - 打开管理员权限的命令提示符(`win + R → cmd → Ctrl+Shift+Enter`) - 执行以下命令[^1]: ```bash mklink /d "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\IDE\Extensions\NVIDIA\CUDA 11.8 Wizards\11.8" "C:\ProgramData\NVIDIA GPU Computing Toolkit\v11.8\extras\visual_studio_integration\CudaProjectVsWizards\15" ``` **注意**:若使用VS 2022,需将路径中的`2019`改为`2022`,且`15`可能对应更高版本号。 ### 3. 配置Visual Studio项目 1. **新建项目** → 选择`CUDA 11.8 Runtime`模板(若未显示需检查插件安装) 2. **配置项目属性**: - *VC++目录* → *包含目录*添加: ```text C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include [^3] ``` - *库目录*添加: ```text C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\lib\x64 ``` - *链接器* → *输入* → *附加依赖项*添加: ```text cudart.lib;cudadevrt.lib ``` 3. **平台选择**:确保配置为`x64` ### 4. 验证环境 创建测试代码(如向量加法): ```cpp __global__ void add(int *a, int *b, int *c) { int tid = blockIdx.x; if (tid < 1000) c[tid] = a[tid] + b[tid]; } int main() { // 主机与设备内存分配及数据传输 // 调用内核函数add<<<1000,1>>>() // 结果回传与验证 return 0; } ``` 编译运行后若成功生成`.exe`且无报错,则配置完成[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dx0014

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值