数学期望&方差 expectation&variance

本文介绍了数学期望和方差的概念,分别针对离散型和连续型随机变量进行了详细阐述。数学期望是加权平均数,方差衡量数据偏离期望的程度。内容包括离散型随机变量的期望与方差计算,函数期望的求解,以及连续型随机变量的期望和方差公式。此外,还讨论了条件期望和相关性质。
摘要由CSDN通过智能技术生成

离散型随机变量

基本概念

定义

数学期望

数学期望其实就是加权平均数。
P ( X = X k ) = P k , 如 果 ∑ k = 1 n x k P ( X k ) 收 敛 , 则 E ( X ) = ∑ k = 1 n x k P ( X k ) 为 X 的 数 学 期 望 。 P(X = X_k) = P_k, 如果\sum_{k=1}^{n}x_kP(X_k)收敛,则E(X) = \sum_{k=1}^{n}x_kP(X_k)为X的数学期望。 P(X=Xk)=Pk,k=1nxkP(Xk)E(X)=k=1nxkP(Xk)X

方差

方差用来衡量数据与期望偏离的程度。
但如果直接用差值表示,会出现正负,而如果取绝对值的话,整个式子会高度不确定。所以我们用取平方来消除正负号带来的影响。
V a r ( X ) = E ( X − E ( X ) ) 2 Var(X) = E(X -E(X))^2 Var(X)=E(XE(X))2
ps.顺便记录标准差的概念:因为计算方差时,会导致X的量纲(单位)发生变化,所以我们经常会用 V a r ( X ) \sqrt{Var(X)} Var(X) 把量纲再变回去,来做一些比较,也就是通常所说的标准差。
离 散 型 : V a r ( X ) = ∑ k ( x k − E ( X ) ) 2 P k 离散型:Var(X) = \sum _k(x_k-E(X))^2P_k Var(X)=k(xkE(X))2Pk

函数的期望

一维变量

令 Y = g ( X ) , E ( X ) = ∑ k = 1 n g ( x k ) P ( X k ) 令Y = g(X),E(X) =\sum_{k=1}^{n}g(x_k)P(X_k) Y=g(X)E(X)=k=1ng(xk)P(Xk)
properties: i f Y = a X + b , t h e n E ( Y ) = a E ( X ) + b if Y = aX+b,then E(Y) = aE(X)+b ifY=aX+b,thenE(Y)=aE(X)+b

二维变量

Z = g ( X , Y ) Z = g(X,Y) Z=g(X,Y)的期望:
E ( Z ) = ∑ i ∑ j g ( x i , y j ) P i j E(Z) = \sum_i \sum_j g(x_i,y_j)P_{ij} E(Z)=<

  • 6
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值