概率论与数理统计-中心矩与原点矩component

本文介绍了概率论与数理统计中的中心矩和原点矩概念。原点矩以原点为中心,一阶原点矩即期望;中心矩则以其期望为中心,二阶中心矩等于方差。对于离散型随机变量,原点矩通过求和计算,中心矩通过减去期望再求和;而在连续型分布中,它们通过积分来计算。高阶矩如四阶以上在实际应用中较为罕见。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

原点矩:以原点为中心 E ( X k ) E(X^k) E(Xk),所以期望EX其实就是一阶原点矩。
中心矩:以EX为中心,一阶中心矩 = 0,二阶中心矩 = 方差DX。

计算

离散型

原点矩: ∑ x k P i \sum x^kP_i xkPi
中心矩: ∑ ( X i − E X ) k P i \sum (X_i - EX)^kP_i (XiEX)kPi

连续型

原点矩: ∫ − ∞ + ∞ x k f ( x ) d x \int_{-\infty}^{+\infty}x^kf(x)dx +xkf(x)dx
中心矩: ∫ − ∞ + ∞ ( x − E X ) k f ( x ) d x \int_{-\infty}^{+\infty}(x - EX)^kf(x)dx +(xEX)kf(x)dx

四阶以上的矩极少使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值