定义
原点矩:以原点为中心
E
(
X
k
)
E(X^k)
E(Xk),所以期望EX其实就是一阶原点矩。
中心矩:以EX为中心,一阶中心矩 = 0,二阶中心矩 = 方差DX。
计算
离散型
原点矩:
∑
x
k
P
i
\sum x^kP_i
∑xkPi
中心矩:
∑
(
X
i
−
E
X
)
k
P
i
\sum (X_i - EX)^kP_i
∑(Xi−EX)kPi
连续型
原点矩:
∫
−
∞
+
∞
x
k
f
(
x
)
d
x
\int_{-\infty}^{+\infty}x^kf(x)dx
∫−∞+∞xkf(x)dx
中心矩:
∫
−
∞
+
∞
(
x
−
E
X
)
k
f
(
x
)
d
x
\int_{-\infty}^{+\infty}(x - EX)^kf(x)dx
∫−∞+∞(x−EX)kf(x)dx
四阶以上的矩极少使用。