旅行(图论)

link

首先这个图是基环树。

可以用各种方法求出一开始颜色相同连通块的个数。我使用并查集。

对于每次询问,改变这条边的颜色,贡献只需看两个点的连边情况。

可以分成两部分考虑,先去掉这条边的颜色,再加上修改的颜色。

前一个操作,如果两边都有这种颜色,那么断掉这条边会增加一个连通块;如果两边都没有,就会减少一个;否则不变。

后一个操作,如果两边都有这种颜色,那么断掉这条边会减少一个连通块;如果两边都没有,就会增加一个;否则不变。

但是如果两边的颜色是同一个连通块,那么就不会增加连通块,这种情况只能是环上的边全是一种颜色(在后种情况就是除了当前边全是一种颜色),特判即可。

实现上可以开 n n n 个 map 维护当前点的出边颜色。

时间复杂度 O ( T n log ⁡ n ) O(Tn\log n) O(Tnlogn)

代码如下

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+1;
int n,m,fa[N],bj[N],dfn[N],low[N],num,vis[N],VIS[N];
stack<int> s;
vector<int> ans;
map<int,int> ma[N],ring;
map<pair<int,int>,int> To;
struct Node
{
    int v,w,id;
    Node(){}
    Node(int a,int b,int c){v=a,w=b,id=c;}
};
vector<Node> v[N];
struct node
{
    int u,v,w;
    bool operator==(const node &a)const{
        return u==a.u&&v==a.v&&w==a.w;
    }
}a[N];
int find(int x)
{
    return x==fa[x]?x:fa[x]=find(fa[x]);
}
void add(int x,int y)
{
    int a=find(x),b=find(y);
    if(a!=b) fa[a]=b;
}
void dfs(int u,int fa)
{
    dfn[u]=low[u]=++num;
    s.push(u);
    for(auto i:v[u]){
        if(!dfn[i.v]){
            dfs(i.v,u);
            low[u]=min(low[u],low[i.v]);
            if(low[i.v]>=dfn[u]){
                vector<int> aa;
                int x=0;
                do{
                    x=s.top();
                    s.pop();
                    aa.push_back(x);
                }while(x!=i.v);
                aa.push_back(u);
                if(aa.size()>2) ans=aa;
            }
        }
        else if(i.v!=fa) low[u]=min(low[u],dfn[i.v]);
    }
}
void Dfs(int u,int fa)
{
    if(VIS[u]) return;
    VIS[u]=1;
    for(auto i:v[u]) if(i.v!=fa&&vis[i.v]) ring[i.w]++,Dfs(i.v,u);
}
int main()
{
    freopen("tour.in","r",stdin);
    freopen("tour.out","w",stdout);
    int t;
    cin>>t;
    while(t--){
        memset(VIS,0,sizeof(VIS));
        memset(vis,0,sizeof(vis));
        memset(dfn,0,sizeof(dfn));
        memset(low,0,sizeof(low));
        num=0;
        while(s.size()) s.pop();
        To.clear();
        ans.clear();
        ring.clear();
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++) fa[i]=i;
        for(int i=1,x,y,w;i<=n;i++){
            scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
            if(a[i].u>a[i].v) swap(a[i].u,a[i].v);
            v[a[i].u].push_back(Node(a[i].v,a[i].w,i));
            v[a[i].v].push_back(Node(a[i].u,a[i].w,i));
            ma[a[i].u][a[i].w]++;
            ma[a[i].v][a[i].w]++;
            To[make_pair(a[i].u,a[i].v)]=i;
        }
        dfs(1,0);
        for(auto i:ans) vis[i]=1;
        if(ans.size()) for(auto i:v[ans.front()]) if(vis[i.v]){Dfs(ans.front(),i.v);break;}
        for(int i=1;i<=n;i++){
            for(auto j:v[a[i].u]){
                if(j.v==a[i].v) continue;
                if(j.w==a[i].w) add(i,j.id);
            }
            for(auto j:v[a[i].v]){
                if(j.v==a[i].u) continue;
                if(j.w==a[i].w) add(i,j.id);
            }
        }
        for(int i=1;i<=n;i++) bj[i]=find(i);
        sort(bj+1,bj+1+n);
        int num=unique(bj+1,bj+1+n)-bj-1;
        for(int i=1,x,y,w;i<=m;i++){
            scanf("%d%d%d",&x,&y,&w);
            if(x>y) swap(x,y);
            int id=To[make_pair(x,y)];
            int fl1=0,fl2=0;
            ma[a[id].u][a[id].w]--;
            ma[a[id].v][a[id].w]--;
            fl1=ma[a[id].u][a[id].w];
            fl2=ma[a[id].v][a[id].w];
            ma[a[id].u][a[id].w]++;
            ma[a[id].v][a[id].w]++;
            if(fl1&&fl2&&(!vis[a[id].u]||!vis[a[id].v]||ring.size()>1)) num++;
            else if(!fl1&&!fl2) num--;
            ma[a[id].u][a[id].w]--;
            ma[a[id].v][a[id].w]--;
            if(vis[a[id].u]&&vis[a[id].v]) ring[a[id].w]--;
            if(!ring.count(a[id].w)) ring.erase(a[id].w);
            if(!ma[a[id].u][a[id].w]) ma[a[id].u].erase(a[id].w);
            if(!ma[a[id].v][a[id].w]) ma[a[id].v].erase(a[id].w);
            a[id].w=w;
            ma[a[id].u][a[id].w]++;
            ma[a[id].v][a[id].w]++;
            if(vis[a[id].u]&&vis[a[id].v]) ring[a[id].w]++;
            fl1=0,fl2=0;
            ma[a[id].u][a[id].w]--;
            ma[a[id].v][a[id].w]--;
            fl1=ma[a[id].u][a[id].w];
            fl2=ma[a[id].v][a[id].w];
            ma[a[id].u][a[id].w]++;
            ma[a[id].v][a[id].w]++;
            if(vis[a[id].u]&&vis[a[id].v]){
                ring[a[id].w]--;
                if(!ring.count(a[id].w)) ring.erase(a[id].w);
            }
            if(fl1&&fl2&&(!vis[a[id].u]||!vis[a[id].v]||ring.size()>1)) num--;
            else if(!fl1&&!fl2) num++;
            if(vis[a[id].u]&&vis[a[id].v]) ring[a[id].w]++;
            printf("%d\n",num);
        }
        for(int i=1;i<=n;i++) v[i].clear(),ma[i].clear();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值