首先这个图是基环树。
可以用各种方法求出一开始颜色相同连通块的个数。我使用并查集。
对于每次询问,改变这条边的颜色,贡献只需看两个点的连边情况。
可以分成两部分考虑,先去掉这条边的颜色,再加上修改的颜色。
前一个操作,如果两边都有这种颜色,那么断掉这条边会增加一个连通块;如果两边都没有,就会减少一个;否则不变。
后一个操作,如果两边都有这种颜色,那么断掉这条边会减少一个连通块;如果两边都没有,就会增加一个;否则不变。
但是如果两边的颜色是同一个连通块,那么就不会增加连通块,这种情况只能是环上的边全是一种颜色(在后种情况就是除了当前边全是一种颜色),特判即可。
实现上可以开 n n n 个 map 维护当前点的出边颜色。
时间复杂度 O ( T n log n ) O(Tn\log n) O(Tnlogn)
代码如下
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+1;
int n,m,fa[N],bj[N],dfn[N],low[N],num,vis[N],VIS[N];
stack<int> s;
vector<int> ans;
map<int,int> ma[N],ring;
map<pair<int,int>,int> To;
struct Node
{
int v,w,id;
Node(){}
Node(int a,int b,int c){v=a,w=b,id=c;}
};
vector<Node> v[N];
struct node
{
int u,v,w;
bool operator==(const node &a)const{
return u==a.u&&v==a.v&&w==a.w;
}
}a[N];
int find(int x)
{
return x==fa[x]?x:fa[x]=find(fa[x]);
}
void add(int x,int y)
{
int a=find(x),b=find(y);
if(a!=b) fa[a]=b;
}
void dfs(int u,int fa)
{
dfn[u]=low[u]=++num;
s.push(u);
for(auto i:v[u]){
if(!dfn[i.v]){
dfs(i.v,u);
low[u]=min(low[u],low[i.v]);
if(low[i.v]>=dfn[u]){
vector<int> aa;
int x=0;
do{
x=s.top();
s.pop();
aa.push_back(x);
}while(x!=i.v);
aa.push_back(u);
if(aa.size()>2) ans=aa;
}
}
else if(i.v!=fa) low[u]=min(low[u],dfn[i.v]);
}
}
void Dfs(int u,int fa)
{
if(VIS[u]) return;
VIS[u]=1;
for(auto i:v[u]) if(i.v!=fa&&vis[i.v]) ring[i.w]++,Dfs(i.v,u);
}
int main()
{
freopen("tour.in","r",stdin);
freopen("tour.out","w",stdout);
int t;
cin>>t;
while(t--){
memset(VIS,0,sizeof(VIS));
memset(vis,0,sizeof(vis));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
num=0;
while(s.size()) s.pop();
To.clear();
ans.clear();
ring.clear();
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) fa[i]=i;
for(int i=1,x,y,w;i<=n;i++){
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
if(a[i].u>a[i].v) swap(a[i].u,a[i].v);
v[a[i].u].push_back(Node(a[i].v,a[i].w,i));
v[a[i].v].push_back(Node(a[i].u,a[i].w,i));
ma[a[i].u][a[i].w]++;
ma[a[i].v][a[i].w]++;
To[make_pair(a[i].u,a[i].v)]=i;
}
dfs(1,0);
for(auto i:ans) vis[i]=1;
if(ans.size()) for(auto i:v[ans.front()]) if(vis[i.v]){Dfs(ans.front(),i.v);break;}
for(int i=1;i<=n;i++){
for(auto j:v[a[i].u]){
if(j.v==a[i].v) continue;
if(j.w==a[i].w) add(i,j.id);
}
for(auto j:v[a[i].v]){
if(j.v==a[i].u) continue;
if(j.w==a[i].w) add(i,j.id);
}
}
for(int i=1;i<=n;i++) bj[i]=find(i);
sort(bj+1,bj+1+n);
int num=unique(bj+1,bj+1+n)-bj-1;
for(int i=1,x,y,w;i<=m;i++){
scanf("%d%d%d",&x,&y,&w);
if(x>y) swap(x,y);
int id=To[make_pair(x,y)];
int fl1=0,fl2=0;
ma[a[id].u][a[id].w]--;
ma[a[id].v][a[id].w]--;
fl1=ma[a[id].u][a[id].w];
fl2=ma[a[id].v][a[id].w];
ma[a[id].u][a[id].w]++;
ma[a[id].v][a[id].w]++;
if(fl1&&fl2&&(!vis[a[id].u]||!vis[a[id].v]||ring.size()>1)) num++;
else if(!fl1&&!fl2) num--;
ma[a[id].u][a[id].w]--;
ma[a[id].v][a[id].w]--;
if(vis[a[id].u]&&vis[a[id].v]) ring[a[id].w]--;
if(!ring.count(a[id].w)) ring.erase(a[id].w);
if(!ma[a[id].u][a[id].w]) ma[a[id].u].erase(a[id].w);
if(!ma[a[id].v][a[id].w]) ma[a[id].v].erase(a[id].w);
a[id].w=w;
ma[a[id].u][a[id].w]++;
ma[a[id].v][a[id].w]++;
if(vis[a[id].u]&&vis[a[id].v]) ring[a[id].w]++;
fl1=0,fl2=0;
ma[a[id].u][a[id].w]--;
ma[a[id].v][a[id].w]--;
fl1=ma[a[id].u][a[id].w];
fl2=ma[a[id].v][a[id].w];
ma[a[id].u][a[id].w]++;
ma[a[id].v][a[id].w]++;
if(vis[a[id].u]&&vis[a[id].v]){
ring[a[id].w]--;
if(!ring.count(a[id].w)) ring.erase(a[id].w);
}
if(fl1&&fl2&&(!vis[a[id].u]||!vis[a[id].v]||ring.size()>1)) num--;
else if(!fl1&&!fl2) num++;
if(vis[a[id].u]&&vis[a[id].v]) ring[a[id].w]++;
printf("%d\n",num);
}
for(int i=1;i<=n;i++) v[i].clear(),ma[i].clear();
}
}