logistic回归 目的、方程、损失函数

logistic回归多用于二分类问题。

目的:给出x,当x满足条件时,y=1的概率是多少。


y ^ = P ( y = 1 ∣ x ) , x ∈ R n x y ^ ∈ [ 0 , 1 ] \hat y=P(y=1|x),x \in R^{nx}\\ \hat y \in[0,1] y^=P(y=1∣x)xRnxy^[0,1]

方程: y ^ = σ ( ω T x + b ) \hat y =\sigma(\omega^Tx+b) y^=σ(ωTx+b)

参数: ω ∈ R n x 、 b ∈ R \omega\in R^{nx}、b\in R ωRnxbR

  1. 线性规划中输出为
    y ^ = ω T x + b \hat y =\omega^Tx+b y^=ωTx+b
    但是 y ^ \hat y y^可能为大于1的数或负数,这样的概率无意义。

  2. 因此在logistic回归中,输出变为
    y ^ = σ ( ω T x + b ) = σ ( z ) ω T x + b = z \hat y =\sigma(\omega^Tx+b)\\=\sigma(z)\\\omega^Tx+b=z y^=σ(ωTx+b)=σ(z)ωTx+b=z
    其中 σ ( ) \sigma() σ()即为sigmoid函数,如下所示。
    在这里插入图片描述

损失函数: J ( ω , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(\omega,b)={1\over m}\sum_{i=1}^m L(\hat y^{(i)},y^{(i)}) J(ω,b)=m1i=1mL(y^(i),y(i))

L ( y ^ , y ) L(\hat y,y) L(y^,y)为单个样本的误差函数,越小越好。


我们常见的衡量误差的函数一般是误差平方,即
L ( y ^ , y ) = 1 2 ( y ^ − y ) 2 L(\hat y,y)={1\over 2}(\hat y-y)^2 L(y^,y)=21(y^y)2
但将其作为损失函数不便于用梯度下降法求最优解,因为为非凸函数。


因此,在logistic回归中,我们定义损失函数如下,起着与误差平方相似的作用
L ( y ^ , y ) = − ( y l o g y ^ + ( 1 − y ) l o g ( 1 − y ^ ) L(\hat y,y)=-(ylog\hat y+(1-y)log(1-\hat y) L(y^,y)=(ylogy^+1ylog(1y^)
当y=1时, L ( y ^ , y ) = − l o g y ^ L(\hat y,y)=-log\hat y L(y^,y)=logy^,想要让损失函数尽可能小,则需使 y ^ \hat y y^尽可能大,接近1

当y=0时, L ( y ^ , y ) = − l o g ( 1 − y ^ ) L(\hat y,y)=-log(1-\hat y) L(y^,y)=log(1y^),想要让损失函数尽可能小,则需使 y ^ \hat y y^尽可能小,接近0

总体的损失函数即为
J ( ω , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(\omega,b)={1\over m}\sum_{i=1}^m L(\hat y^{(i)},y^{(i)}) J(ω,b)=m1i=1mL(y^(i),y(i))

logistic的训练过程,即通过不断的训练找到参数 ω 、 b \omega、b ωb,使得损失函数最小

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快苏排序OAO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值