Weakly- and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation

在这里插入图片描述

abstract

Deep convolutional neural networks (DCNNs) trained on a large number of images with strong pixel-level annotations have recently significantly pushed the state-of-art in semantic image segmentation. We study the more challenging problem of learning DCNNs for semantic image segmentation from either

  1. weakly annotated training data such as bounding boxes or image-level labels or
  2. a combination of few strongly labeled and many weakly labeled images, sourced from one or multiple datasets.

We develop Expectation-Maximization (EM) methods for semantic image segmentation model training under these weakly supervised and semi-supervised settings. Extensive experimental evaluation shows that the proposed techniques can learn models delivering competitive results on the challenging PASCAL VOC 2012 image segmentation benchmark, while requiring significantly less annotation effort. We share source code implementing the proposed system at https://bitbucket.org/deeplab/deeplab-public.

Proposed Methods

像素级别的标注(全监督)

目标函数是:
J ( θ ) = log ⁡ P ( y ∣ x ; θ ) = ∑ m = 1 M log ⁡ P ( y m ∣ x ; θ ) J(\boldsymbol{\theta})=\log P(\boldsymbol{y} | \boldsymbol{x} ; \boldsymbol{\theta})=\sum_{m=1}^{M} \log P\left(y_{m} | \boldsymbol{x} ; \boldsymbol{\theta}\right) J(θ)=logP(yx;θ)=m=1MlogP(ymx;θ)
式中, θ \theta θ是DNN的参数,每个像素的标签分布可以按照下式计算:
P ( y m ∣ x ; θ ) ∝ exp ⁡ ( f m ( y m ∣ x ; θ ) ) P\left(y_{m} | \boldsymbol{x} ; \boldsymbol{\theta}\right) \propto \exp \left(f_{m}\left(y_{m} | \boldsymbol{x} ; \boldsymbol{\theta}\right)\right) P(ymx;θ)exp(fm(ymx;θ))
式中, f m ( y m ∣ x ; θ ) f_{m}\left(y_{m} | \boldsymbol{x} ; \boldsymbol{\theta}\right) fm(ymx;θ)是DCNN在第 m m m个像素的输出,使SGD即可优化 J ( θ ) J(\boldsymbol{\theta}) J(θ)

图象级别的标注

当只有图像级注释可用时,我们可以观察到图像像素值 x \boldsymbol{x} x和图像级标签 z \boldsymbol{z} z,但像素级分割结果 y \boldsymbol{y} y是潜在变量。建立如下概率图模型:
P ( x , y , z ; θ ) = P ( x ) P ( y ∣ x ; θ ) P ( z ∣ y ) = P ( x ) ( ∏ m = 1 M P ( y m ∣ x ; θ ) ) P ( z ∣ y ) P(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} ; \boldsymbol{\theta})=P(x)P(y|x;\theta)P(z|y)=P(\boldsymbol{x})\left(\prod_{m=1}^{M} P\left(y_{m} | \boldsymbol{x} ; \boldsymbol{\theta}\right)\right) P(\boldsymbol{z} | \boldsymbol{y}) P(x,

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值