【弱监督学习】Learning deep semantic segmentation network under multiple weakly-supervised constraints ...

0.前言

文章全名《Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation》
这是一篇2021年发表在ISPRS上的一篇关于遥感图像分割的文章,通过设计一个新的弱监督目标函数和一个动态优化策略,让深度图像分割网络更适合真实的遥感图像分割场景。

1.本文动机

本文着眼于遥感图像分割,着手解决现有遥感图像分割的两大问题:
第一则是没有大量的高质量的训练集标签;
第二则是真实场景中的测试数据往往和训练数据不太一样(数据分布或域不太一样);
为了解决上述两大问题,本文提出了一个多个弱监督约束量的目标函数和一个动态优化策略,让深度遥感图像分割网络更加适合真实场景。

2.本文方法

为了叙述清楚本文的方法,本文也先定义了一些符号,如下:
请添加图片描述
整体pipeline如下图所示:
请添加图片描述

2.1 无监督风格转换

本文将源图像转到目标图像用的方法如上图所示,采用了DualGAN。结构如下:
请添加图片描述
源图像通过生成器A来生成目标图像,然后生成的目标图像又通过生成器B转换回源图像。生成成的源图像和源图像之间做重建损失,同理目标图像也经历类似的过程。同时有两个判别器判别图像是生成的还是真的。

使用DualGAN的原因是因为其它无监督的方法对遥感图像来说效果并不好,因为遥感图像有着许多复杂的特性。

2.2 多无监督约束的目标函数

由于使用DualGAN转换出来的图像和目标域不能完全相同,肯定存在一定差异,所以本文引入三个弱监督的约束来构成目标函数,通过优化目标函数来获得更好地目标域分割结果。
三个弱监督约束如整体pipeline所示,分别是:

  1. 弱监督迁移不变约束;
  2. 弱监督伪标签约束;
  3. 弱监督旋转连续性约束。

这里原文虽然把上面的这三个东西称之为constraint,但其实这三个就是三个弱监督学习的损失,就是之前的你们了解的那个损失。
这三个约束项以下面的式子组合成目标函数:
请添加图片描述
如此,涉及到一个比较难以决定的问题,那就是不同约束项前面的权重参数怎么选择比较合适。文中采用高斯ramp-up曲线来选择 α \alpha α β \beta β,这个曲线可以表示为 e x p [ − 5 ( 1 − t ) 2 ] exp[-5(1-t)^2] exp[5(1t)2] t t t从0开始线性增加到训练最后增加到1,从高斯ramp-up曲线上取出的值就被赋给了 α \alpha α β \beta β,作为权重参数。高斯ramp-up曲线的图像大概是下面这个样子:
请添加图片描述

2.2.1弱监督迁移不变约束

经过DualGAN的转换,我们能够获得一个生成的数据集,这个数据集和目标域的数据集是类似的,用这个数据集很利于我们学习目标域的特征。于是文章使用这个生成的数据集来训练一个DSSN,从而获得了一个可以对目标域进行分割的网络。

这个所谓的弱监督迁移不变约束也就是平时常见的交叉熵损失,如下:
请添加图片描述
之所以称之为弱监督,是因为我们并没有目标域的标签,而是使用生成的目标域的数据和其标签来对DSSN进行训练的。

2.2.2 弱监督伪标签约束

由于经过DualGAN生成的目标域图像并不真的是目标域图像,所以这些生成的图像在整个网络的训练过程中只能起到指导作用,靠着生成的这些数据是不能够把网络训练好的。鉴于之前的一些工作证明了伪标签在弱监督学习里的作用,本文引入第二个约束——弱监督伪标签约束。

每一代经过弱监督迁移不变约束训练的DSSN(或者初始化参数)都可以把目标域图像作为输入从而生成一个标签,这个标签就是所谓的伪标签。我们在生成伪标签之后利用伪标签做一个损失,也就是把目标域图像和对应的伪标签看做训练集,从而更新DSSN,就可以实现伪标签约束,利用伪标签提升网络的性能。

在更新计算损失的时候,依然采用经典的交叉熵损失:
请添加图片描述
只不过损失中的图像是目标域图像,标签是伪标签。

当然,不是所有的伪标签都是好用的,文中设置了一个判断伪标签是否可用的条件,那就是top1类别的值和top2类别的值之间的差必须超过一个设定好的阈值,以此来作为判断伪标签分类好坏的标准。只有超过阈值的伪标签才能参与优化。

2.2.3 弱监督旋转连续性约束

为了能够利用到无标签的数据,本文引入了弱监督旋转连续性约束。这个约束的思想是,要很好地完成pixel-level的分类,就要让模型对经过变换后的图像仍然有分类能力。如此,本文将无标签的Target图像随机旋转90、180、270度,作为输入传进模型,获得输出的分割结果,然后求没旋转和旋转后的分割结果的误差,当然旋转后的分割图最后要旋转回来,误差用的就是简单的MSE,如下:
请添加图片描述

2.2.4 动态优化策略

这个动态优化策略其实讲的就是上面的所有提出的点如何使用的。整体的算法步骤如下:
请添加图片描述
从这个算法步骤来看,分为两个阶段,准备阶段和动态优化阶段。

准备阶段首先使用source和target数据训练出一个DualGAN,然后把source数据通过DualGAN转化 S ′ {\mathcal{S}}^{'} S,然后就先只用WTIC(弱监督迁移不变约束)来优化DSSN,训练出一个比较ok的DSSN,随后利用这个DSSN生成伪标签。

动态阶段就开始引入之前讲的所有约束了,也就是用整体的损失来对DSSN进行进一步优化。

3.实验

3.1 阈值设置

在2.2.2小节中,我提到了本文在生成伪标签时是有一个过滤机制的,会把top1和top2的类间相差的值超过一定的阈值,才会保留。这个阈值如果设置的过大,就会导致好多区域被滤除掉,从而带来不好的结果。所以这个阈值取的十分关键,本文通过大量实验最终确定阈值取0.5比较合适,实验结果如下:
请添加图片描述

3.1 DualGAN与其它GAN的对比

请添加图片描述
请添加图片描述
很明显,DualGAN效果是最好的。

4.总结

本文通过提出了一个多弱监督损失和动态优化策略,解决了目前遥感图像分类中存在的domain-shift的问题,并且很好地利用了无标签数据。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值