小目标检测的五个方向 + Global Context +Local Context 综述

首先推荐大家两篇目标检测综述论文,都是2018年11月的。

Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks
Deep Learning for Generic Object Detection: A Survey

CVPR2019目标检测方法进展综述【另附一个2019的】

继往开来!目标检测二十年技术综述《Object Detection in 20 Years: A Survey》

解决小目标问题的方法有很多,例如:i)图像的缩放;ii)浅网络;iii)上下文信息;iv)超分辨率。补充还有针对小目标的图像增强,这个是最新的一篇论文中有提到。

下面将讨论前四个方向

第一个——也是最琐碎的一个方向——是在检测前对图像进行缩放。但是,由于大图像变得太大,无法装入GPU进行训练,因此单纯的升级并不有效。ao等[2017]首先下采样图像,然后利用强化学习训练基于注意力的模型,动态搜索图像中感兴趣的区域。然后对选定的区域进行高分辨率的研究,并可用于预测较小的目标。这避免了对图像中每个像素进行同等关注分析的需要,节省了一些计算成本。一些论文[Dai等,2016b,2017年,Singh和Davis, 2018年]在目标检测上下文中训练时使用图像金字塔,而[Ren et al., 2017]在测试时使用。

第二个方向是使用浅层网络。小物体更容易被接受场较小的探测器预测。较深的网络具有较大的接受域,容易丢失关于较粗层中较小对象的一些信息。Sommer等[2017b]提出了一种非常浅的网络,只有四个卷积层和三个完全连接的层,用于检测航空图像中的目标。当期望的实例类型很小时,这种类型的检测器非常有用。但是,如果预期的实例具有不同的大小,则效果更好

 

第三个方向是利用围绕小对象实例的上下文。Gidaris和Komodakis [2015], Zhu等[2015b]使用上下文来提高性能,Chen等[2016a]则专门使用上下文来提高小对象的性能。他们使用上下文补丁对R-CNN进行了扩展,与区域建议网络生成的建议补丁并行。Zagoruyko等人[2016]将他们的方法与深度掩模对象建议相结合,使信息通过多条路径流动。

 

最后,正如Li等人[2017c]所提出的,最后一个方向是利用生成对抗性网络选择性地提高小目标的分辨率。
它的生成器学会了将小对象的不佳表示增强为超分辨对象,这些超分辨对象与真实的大对象非常相似,足以欺骗竞争的鉴别器。

引自:Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks

 

Global Context +Local Context
 

 

 

 

图出自:Deep Learning for Generic Object Detection: A Survey

©️2020 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值