分桶的概述
-
为什么要分桶
- 数据分区可能导致有些分区数据过多,有些分区数据极少。分桶是将数据集分解为若干部分(数据文件)的另一种技术。
- 分区和分桶其实都是对数据更细粒度的管理。当单个分区或者表中的数据越来越大,分区不能细粒度的划分数据时,我们就采用分桶技术将数据更细粒度的划分和管理
- [CLUSTERED BY (col_name, col_name, …)
- stored by (uid desc)
-
分桶的原理
- 与MapReduce中的HashPartitioner的原理一模一样
- MapReduce:使用key的hash值对reduce的数量进行取模(取余)
- hive:使用分桶字段的hash值对分桶的数量进行取模(取余)。针对某一列进行分桶存储。每一条记录都是通过分桶字段的值的hash对分桶个数取余,然后确定放入哪个桶。
- 与MapReduce中的HashPartitioner的原理一模一样
-
分桶的意义
-
为了保存分桶查询的分桶结构(数据已经按照分桶字段进行了hash散列)
-
分桶表适合进行数据抽样
抽样更高效。处理大数据时,如果能在数据集的一部分上运行查询进行测试会带来很多方便
-
join操作时可以提高MR的查询效率
连接查询两个在相同列上划分了桶的表,可以在map端进行高效的连接操作。
比如jion操作。对于两个表都有一个相同的列,如果对两个表都进行桶操作,那么hive底层会对相同列值的桶进行join操作。效率很高
-
2. 分桶的操作
-
创建分桶表和加载数据
-
错误的方式:
-
建表语句: 语句正确
create table student(
id int,
name string,
sex string,
age int,
academy string
)
clustered by (sno) into 4 buckets #即指定了分桶字段也指定了排序字段
row format delimited
fields terminated by ‘,’
; -
加载数据:方式错误,load实际上也是copy,没有分桶效果。
load data local inpath ‘./data/students.txt’ into table student;
-
-
正确的方式:
-
建表语句:语句正确
create table student(
sno int,
name string,
sex string,
age int,
academy string
)
clustered by (sno) sorted by (sage desc) into 4 buckets #分桶字段和排序字段可以不一致
row format delimited
fields terminated by ‘,’
; -
加载数据:分两步
-
第一步:先创建临时表
create table temp_student(
sno int,
name string,
sex string,
age int,
academy string
)
clustered by (sno) sorted by (sage desc) into 4 buckets
row format delimited
fields terminated by ‘,’
;load data local inpath './data/students.txt' into table temp_student;
-
从临时表中查询并导入数据
insert into|overwirte table student
select * from temp_student
distribute by(sno)
sort by (sage desc)
;
-
-
-
小贴士:
-
需要设置reduce数量和分桶数量相同:
set mapreduce.job.reduces=4;
-
如果数据量比较大,我们可以使用MR的本地模式:
set hive.exec.mode.local.auto=true;
-
强行分桶设置: (常规配置)
set hive.enforce.bucketing=true; 默认是false
测试 insert overwrite table student select * from temp_student distribute by(sno) sort by (sage desc) ;
-
强行排序:(常规配置)
set hive.enforce.sorting=true;
测试: insert overwrite table student select * from temp_student distribute by(sno) sort by (sage desc) ;
-
-
-
分桶的查询
-
语法:
语法:tablesample(bucket x out of y on sno)
x:代表从第几桶开始查询,x不能大于y
y:代表查询的总桶数,y可以是总桶数的因子或者倍数 -
查询全部
select * from student;
select * from student tablesample(bucket 1 out of 1); -
指定桶查询
查询第一桶 select * from student tablesample(bucket 1 out of 4 on sno);
查询第一桶和第三桶
select * from student tablesample(bucket 1 out of 2 on sno);
查询第二桶和第四桶的数据
select * from student tablesample(bucket 2 out of 2 on sno);
查询对8取余的第一桶的数据:
select * from student tablesample(bucket 1 out of 8 on sno); -
其他查询
查询三行数据
select * from student limit 3;
select * from student tablesample(3 rows);
查询百分比的数据
select * from student tablesample(13 percent);
查询固定大小的数据
select * from student tablesample(68b); 单位(K,KB,MB,GB…)
随机抽三行数据
select * from student order by rand() limit 3;
-