十字相乘法与配方法的比较

十字相乘法

十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

以a^2+2a-15=(a+5) (a-3)为例:




配方法

通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。同时也是数学一元二次方程中的一种解法(其他两种为公式法和分解因式法)。


方法如下:

1.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)   

2.移项: 常数项移到等式右边   

3.系数化1: 二次项系数化为1   

4.配方: 等号左右两边同时加上一次项系数一半的平方   

5.求解: 用直接开平方法求解

6.整理 (即可得到原方程的根)   

代数式表示方法:注(^2是平方的意思.)   

ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)   

例:解方程2x^2+4=6x   

1. 2x^2-6x+4=0   

2. x^2-3x+2=0   

3. x^2-3x=-2   

4. x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)   

5. (x-1.5)^2=0.25 (a^2+2a+1=0 即 (a+1)^2=0)   

6. x-1.5=±0.5   

7. x1=2   x2=1 (一元二次方程通常有两个解,X1 X2)
### 回答1: 二次函数的十字相乘是用来求解二次方程的一种方法。 使用方法如下: 假设二次方程为ax^2 + bx + c = 0,则十字相乘的步骤如下: 1. 计算 a c 的乘积,记为 ac。 2. 计算 b 的平方,记为 b^2。 3. 计算 ac b^2 的差,记为 D。 4. 如果 D > 0,则该二次方程有两个不等的实数根,可以用公式 x1 = (-b + sqrt(D)) / (2a) x2 = (-b - sqrt(D)) / (2a) 求出;如果 D = 0,则该二次方程有两个相等的实数根,可以用公式 x1 = x2 = -b / (2a) 求出;如果 D < 0,则该二次方程无实数根。 例如,计算二次方程 x^2 - 5x + 6 = 0 的根,可以这样做: 1. 计算 ac = 1 * 6 = 6 2. 计算 b^2 = 5^2 = 25 3. 计算 D = b^2 - ac = 25 - 6 = 19 4. 由于 D > 0,该二次方程有两个不等的实数根。计算 x1 x2 分别为:x1 = (-5 + sqrt(19)) / 2 = 1,x2 = (-5 - sqrt(19)) / 2 = 2。 综上所述,二次方程 x^2 - 5x + 6 = 0 的两个实数根分别为 1 2。 ### 回答2: 二次函数的十字相乘是一种用于求解二次方程的方法。首先,假设有一个二次方程$ax^2 + bx + c = 0$,其中a、b、c是已知的实数,并且a不等于0。 为了使用十字相乘,首先我们要将二次方程化简为标准形式,即将x的系数设为1。若a不等于1,则可通过将方程两边除以a来实现这一点。 然后,我们需要对方程中的b项c项进行分解。将b项的系数b拆分为两个数pq,使得p+q=b。接下来,将c项的系数c拆分为两个数rs,使得r×s=c。 接着,我们将方程重新写为$(x+p)(x+q)=0$。这一步是通过使用十字相乘将方程展开得到的。展开之后,可以得到$x^2+(p+q)x+pq=0$。 最后,根据零因子则,$(x+p)(x+q)=0$成立的条件是,至少有一个因子等于0。因此,我们可以得到两个根:$x=-p$$x=-q$。 总结来说,十字相乘是一种将二次方程化为标准形式,通过分解bc的系数,然后使用零因子则得到方程的根的方法。通过这个方法,我们可以更方便地求解二次方程,找到它的根。 ### 回答3: 二次函数的十字相乘是一种求解二次方程根的方法。具体步骤如下: 首先,对于形如ax²+bx+c=0的二次方程,确定其系数a、bc的值。 然后,计算二次项系数a常数项c的乘积ac。 接下来,找出两个数,它们的为b,乘积为ac。这两个数就是二次方程的根。 最后,利用这两个根,写出二次方程的因式分解形式。 例如,对于二次方程2x²+5x+3=0。 乘积ac=2×3=6。 接下来,我们要找两个数,它们的为5,乘积为6。很明显,这两个数是23。 所以,二次方程的因式分解形式为(2x+1)(x+3)=0。 根据因式分解形式,我们可以解得二次方程的根为x=-1/2x=-3。 十字相乘的优点是简单快捷,能够直接给出二次方程的根。但有时也会遇到不易找出两个数的情况,此时可以使用求根公式或配方继续求解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

e421083458

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值