机器学习 第二讲 Linear Regression

本次讲解以宝可梦CP值预测为例,探讨线性回归(Linear Regression)的应用。首先,定义了线性模型,包括bias和weight。接着,介绍了损失函数(Loss function)用于评估模型性能,并通过梯度下降法寻找全局最小值。在分析过程中,讨论了如何决定函数集合,指出更大的函数集合可能导致训练集表现好但测试集表现下降,即过拟合现象。为解决过拟合,提出了重新设计模型和正则化策略,通过在损失函数中添加常数来降低噪声影响,使输出更加稳定。
摘要由CSDN通过智能技术生成

    本讲主要是根据宝可梦的cp值预测,期待的输出是一个数值,所以这是一个Regression的learn。由上一讲可知,Linear是指linear model,是function set 的类型。

    根据需求,

    根据需求,先按照上述步骤进行讲述。

一. 寻找suitable function

    1. 先设定function set 是一个一次函数,到这里已经完成第一步。

        linear model : 

            b : bias

            w : weigth

            在后续分析错误时,这些名称会被用到

    2. 然后定义L(f) ——Loss function,该function用于判定function set中的函数的好坏

        L(f):

    3. Gradient Descent

        使用偏微分的方法将L(f)的global minima 计算出来

二. 分析上述过程中会出现的各种问题

    1. how to desid

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值