Algebra:Chapter 0 - 不相交并和积

不相交的并和积

之前学过的那些集合操作的问题是并不是被定义成一个集合,而是一个到 u p   t o   i s o m o r p h i s m s   o f   s e t s up\ to\ isomorphisms\ of\ sets up to isomorphisms of sets(至多是集合的同构),也就是双射( b i j e c t i o n s bijections bijections)。为了能有更大的意义,我们必须讨论 f u n c t i o n s functions functions

一般来说,两个集合 S S S T T T d i s j o i n t   u n i o n disjoint\ union disjoint union得到一个集合 S ∐ T S \coprod T ST,通过生成集合 S S S T T T的副本 S ′ S' S T ′ T' T,它们具有这样的属性: S ′ ∩ T ′ = ∅ S' \cap T' = \empty ST=,然后取 S ′ S' S T ′ T' T的并。细心的读者会发现这个步骤并没有定义一个集合:不论集合的拷贝什么含义,有很多方式可以这么做。

S × T S \times T S×T 是集合 S S S T T T中元素的有序对 ( s , t ) (s, t) (s,t)构成的集合: S × T ≔ { ( s , t )   s u c h   t h a t   s ∈ S ,   t ∈ T } S\times T \coloneqq \{(s,t)\ such\ that\ s \in S,\ t \in T\} S×T:={(s,t) such that sS, tT}如果 S = { 1 , 2 , 3 } S=\{1,2,3\} S={1,2,3}并且 T = { 3 , 4 } T=\{3,4\} T={3,4},那么 S × T = { ( 1 , 3 ) , ( 1 , 4 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 3 , 3 ) , ( 3 , 4 ) } S\times T = \{(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)\} S×T={(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)}举一个更复杂的例子, R × R \mathbb{R}\times \mathbb{R} R×R是实数对的集合,能够很好的代表平面。而 Z × Z \mathbb{Z}\times\mathbb{Z} Z×Z则是平面上的点,只不过坐标恰好为整数。通常把这些集合记作 R 2 \mathbb{R}^{2} R2 Z 2 \mathbb{Z}^{2} Z2

如果 S S S T T T都是有限集合的话,显然有 ∣ S × T ∣ = ∣ S ∣ ∣ T ∣ \vert S\times T\vert = \vert S\vert \vert T\vert S×T=ST

集合操作 ∪ \cup ∩ \cap ∐ \coprod × \times ×可以扩展到一族集合上:例如,令 S 1 , … , S n S_{1},\dots,S_{n} S1,,Sn都是集合, ⋂ i = 1 n S i = S 1 ∩ S 2 ∩ ⋯ ∩ S n \bigcap_{i=1}^{n} S_{i} = S_{1}\cap S_{2}\cap \cdots \cap S_{n} i=1nSi=S1S2Sn这个集合中所有的元素都是那些同时在集合 S 1 , … , S n S_{1},\dots,S_{n} S1,,Sn中出现的元素,对于其他操作也是类似的。注意下面两个表达式的区别: S 1 ∪ S 2 ∪ S 3 = ( S 1 ∪ S 2 ) ∪ S 3 = S 1 ∪ ( S 2 ∪ S 3 ) S_{1}\cup S_{2}\cup S_{3}=(S_{1}\cup S_{2})\cup S_{3}=S_{1}\cup (S_{2}\cup S_{3}) S1S2S3=(S1S2)S3=S1(S2S3) S 1 × S 2 × S 3 ,    ( S 1 × S 2 ) × S 3 ,    S 1 × ( S 2 × S 3 ) S_{1}\times S_{2} \times S_{3},\ \ (S_{1}\times S_{2})\times S_{3},\ \ S_{1}\times (S_{2}\times S_{3}) S1×S2×S3,  (S1×S2)×S3,  S1×(S2×S3)第二个表达式中的三个并不相等。

S \mathscr{S} S是一族集合( S \mathscr{S} S是一个集合,它的元素也是集合),我们可以考虑下面的集合: ⋃ S ∈ S S ,      ⋂ S ∈ S S ,      ∐ S ∈ S S ,      ∏ S ∈ S S \bigcup_{S \in \mathscr{S}}S,\ \ \ \ \bigcap_{S \in \mathscr{S}}S,\ \ \ \ \coprod_{S \in \mathscr{S}}S,\ \ \ \ \prod_{S \in \mathscr{S}}S SSS,    SSS,    SSS,    SSS代表了 S \mathscr{S} S中所有集合的并,交,不相交的并和笛卡尔积。对于这些定义,有一些小细节需要注意:比如,对于所有的 S ∈ S S \in \mathscr{S} SS都是非空的,那么 ∏ S ∈ S \prod_{S \in \mathscr{S}} SS也是非空的吗?读者或许觉得是非空的,但是如果 S \mathscr{S} S是一个无限集合的时候,这个问题有点棘手,和选择公理有关( a x i o m   o f   c h o i c e axiom\ of\ choice axiom of choice)。

大体上这些细微之处并不影响本课程中的材料;当遇到这些问题的时候再详细讨论。

解读

  • 引入了两个新的操作
  • 集合族的操作
  • 无限集合和有限集合的差别有点大
  • 选择公理

遇到集合族的操作我就头大,高一的时候看的竞赛书上第一章就是集合的竞赛题,直接把我劝退了。

单词

  • isomorphisms: 同构,同型
  • bijections: 双射
  • marred: 破坏;毁坏;损毁;损害;mar的过去分词和过去式
  • incidentally: (引出新话题、附加信息、或临时想到的问题)顺便提一句;偶然;附带地
  • thorny: 棘手的;麻烦的;引起争议的;有刺的;多刺的
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值