Algebra:Chapter 0 - 4. Morphisms

4. Morphisms

S e t \mathsf{Set} Set中我们关注了某些函数(injective,surjective,bijective),在任意一个范畴上对态射做同样的事情很有意义。读者应该注意到对元素的动作定义的态射并不是一个一般性的设置,因为一个任意的范畴的对象不一定有元素。

这就是为什么我们要分析injectivity的原因。

4.1. Isomorphisms.

C \mathsf{C} C是一个范畴。

Define 4.1. 一个态射 f ∈ H o m ( A , B ) f\in \mathrm{Hom}(A,B) fHom(A,B)是同构的( i s o m o r p h i s m isomorphism isomorphism),如果它在复合下有一个逆:也就是如果 ∃ g ∈ ( H o m ) C ( B , A ) \exist g\in \mathrm(Hom)_{\mathsf{C}}(B,A) g(Hom)C(B,A),使得 g f = 1 A , f g = 1 B gf=1_{A},\quad fg=1_{B} gf=1A,fg=1B在这个定义中并没有说明确说明 g g g的唯一性,但是它的属性能保证它的唯一性,但是需要验证。

Proposition 4.2. 同构的逆是唯一的。

Proof. 我们需要验证如果 g 1 g_{1} g1 g 2 g_{2} g2 B → A B\rightarrow A BA都是给定态射 f : A → B f:A\rightarrow B f:AB的逆,那么 g 1 = g 2 g_{1}=g_{2} g1=g2

Proposition 4.3.

  • 每个恒等态射 1 A 1_{A} 1A都是一个isomorphism,并且它们的逆是自己。
  • 如果 f f f是一个isomorphism,那么 f − 1 f^{-1} f1是一个isomorphism,并且 ( f − 1 ) − 1 = f (f^{-1})^{-1}=f (f1)1=f
  • 如果 f ∈ H o m C ( A , B ) f\in \mathrm{Hom}_{\mathsf{C}}(A,B) fHomC(A,B) g ∈ H o m C ( B , C ) g\in \mathrm{Hom}_{\mathsf{C}}(B,C) gHomC(B,C)都是isomorphism,那么复合 g f gf gf也是一个isomorphism,并且 ( g f ) − 1 = f − 1 g − 1 (gf)^{-1} = f^{-1}g^{-1} (gf)1=f1g1

Proof.

Example 4.4. 当然,在范畴 S e t \mathsf{Set} Set中的isomorphism是bijections。

Example 4.5. 在Proposition 4.3提到过,恒等态射是isomorphisms。它们可能是范畴中唯一的isomorphism:比如,从 Z \mathbb{Z} Z上的 ≤ \leq 关系而来的范畴 C \mathsf{C} C就是这样的。对于范畴 C \mathsf{C} C中的对象 a , b a,b a,b(即 a , b ∈ Z a,b\in \mathbb{Z} a,bZ),有一个态射 f : a → b f:a\rightarrow b f:ab和态射 g : b → a g:b\rightarrow a g:ba,当且仅当 a ≤ b a\leq b ab以及 b ≤ a b \leq a ba时同时存在,也就是 a = b a=b a=b。所以在范畴 C \mathsf{C} C上的一个isomorphism就是对象 a a a到自己;而且在范畴 C \mathsf{C} C中唯一存在这样一个态射,就是 1 a 1_{a} 1a

Example 4.6. 另一方面,有些范畴的每个态射都是isomorphism;这些范畴被称为 g r o u p o i d s groupoids groupoids。读者已经知道了很多groupoids的例子了。

范畴 C \mathsf{C} C中的一个对象 A A A a u t o m o r p h i s m automorphism automorphism是一个从 A A A到自身的isomorphism。 A A A的automorphisms的集合记作 A u t C ( A ) \mathrm{Aut}_{\mathsf{C}}(A) AutC(A);它是 E n d C ( A ) \mathrm{End}_{\mathsf{C}}(A) EndC(A)的子集。在 A u t C ( A ) \mathrm{Aut}_{\mathsf{C}}(A) AutC(A)上的复合是一个值得注意的结构:

  • A u t C ( A ) \mathrm{Aut}_{\mathsf{C}}(A) AutC(A)中的两个元素 f , g f,g f,g的复合 g f ∈ A u t C ( A ) gf\in \mathrm{Aut}_{\mathsf{C}}(A) gfAutC(A)
  • 复合具有结合性;
  • A u t C ( A ) \mathrm{Aut}_{\mathsf{C}}(A) AutC(A)包含元素 1 A 1_{A} 1A,它对于复合来说是恒的,即 f 1 A = 1 A f = f f1_{A}=1_{A}f=f f1A=1Af=f
  • 每个元素 f ∈ A u t C ( A ) f\in \mathrm{Aut}_{\mathsf{C}}(A) fAutC(A)都有一个逆 f − 1 ∈ A u t C ( A ) f^{-1}\in \mathrm{Aut}_{\mathsf{C}}(A) f1AutC(A)

换句话说,对于所有的范畴 C \mathsf{C} C中所有的对象 A A A来说, A u t C ( A ) \mathrm{Aut}_{\mathsf{C}}(A) AutC(A)是一个群( g r o u p group group)。

4.2. 态射和泛射

正如上面指出的,我们并没有选择对任意的一个范畴来定义态射,比如像集合-函数那样的“injective”:这种定义需要“元素”记号,一般而言,一个范畴中的对象没有这种记号。但是在任意范畴中,我们都可以定义 m o n o m o r p h i s m s monomorphisms monomorphisms

Definition 4.7. C \mathsf{C} C为一个范畴。态射 f ∈ H o m C ( A , B ) f\in \mathrm{Hom}_{\mathsf{C}}(A,B) fHomC(A,B)是一个单态,如果它满足下面条件: 对 于 所 有 的 范 畴 C 中 的 对 象 Z , 以 及 所 有 的 态 射 α ′ , α ′ ′ ∈ H o m C ( Z , A ) , 对于所有的范畴\mathsf{C} 中的对象Z,以及所有的态射\alpha',\alpha''\in \mathrm{Hom}_{\mathsf{C}}(Z,A), CZα,αHomC(Z,A), f ∘ α ′ = f ∘ α ′ ′ ⟹ α ′ = α ′ ′ f\circ\alpha'=f\circ\alpha''\Longrightarrow \alpha'=\alpha'' fα=fαα=α泛射也可以类似的定义: 对 于 所 有 的 范 畴 C 中 的 对 象 Z , 以 及 所 有 的 态 射 β ′ , β ′ ′ ∈ H o m C ( Z , A ) , 对于所有的范畴\mathsf{C} 中的对象Z,以及所有的态射\beta',\beta''\in \mathrm{Hom}_{\mathsf{C}}(Z,A), CZβ,βHomC(Z,A), β ′ ∘ f = β ′ ′ ∘ f ⟹ β ′ = β ′ ′ \beta'\circ f=\beta''\circ f\Longrightarrow \beta'=\beta'' βf=βfβ=β

Example 4.9. 就像证明Proposition 2.3那样,在范畴 S e t \mathsf{Set} Set中,monomorphisms就是injective函数。读者应该可以类似检查,在范畴 S e t \mathsf{Set} Set中,epimorphisms就是surjective函数。在2.6给出的定义可能看上去counterintuitive,它们就像范畴的对应部分一样。

Example 4.10. 在范畴的例子Example 3.3中,每个态射既是monomorphism又是一个epimorphism。确实,回忆一下在些范畴中在任意两个对象之间最多有一个态射,因此这些条件定义了monomorphisms和epimorphisms是空洞的。

思考一下Example 4.10 会揭示出一些在这些定义中没有预料到的情况,它们违背了我们对集合论的直觉。例如子范畴 S e t \mathsf{Set} Set中,一个函数是isomorphism,当且仅当它是injective和surjective,因此当切仅当它是一个monomorphism和一个epimorphism。但是在范畴中通过在 Z \mathbb{Z} Z上定义 ≤ \leq ,每个态射既是monomorphism又是epimorphism,但是唯一的isomorphism是恒等(Example 4.5)。因此这个属性是范畴 S e t \mathsf{Set} Set中的一个特例,我们不应该觉得每个范畴都有这个属性;比如它在 r i n g s rings rings的范畴 R i n g \mathsf{Ring} Ring就不具有这个性质。它在每个 a b e l i a n   c a t e g o r y abelian\ category abelian category中具有这个属性,而范畴 S e t \mathsf{Set} Set不是一个阿贝尔范畴。

类似的,范畴 S e t \mathsf{Set} Set中,一个函数是epimorphism,说的是surjective当且仅当它有右逆时;在大多数情况下这个条件并不满足,即使在一些有名的范畴中,比如群的范畴 G r p \mathsf{Grp} Grp

练习

这水平做不了练习啊。

单词

  • isomorphisms: 同构;同形;同型性;同形反应;同型论
  • epimorphisms: 泛射
  • monomorphisms: 单态
  • vacuous: 空洞的;空洞无物的
  • twist: 转动;旋转;搓;捻;拧;扭动;(故事或情况的)转折,转变,突然变化;急转弯处;曲折处
  • defy: 违抗;反抗;蔑视;不可能,无法(相信、解释、描绘等);经受住;顶住;抗住
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值