集合
s e t set set记号将“一坨对象”这个直观的概念给正式化了。集合中所包含的对象就确定了这个集合:两个集合 A A A和 B B B是相等的(记作 A = = B A == B A==B)当前仅当它们包含了相同的元素。
“什么是一个元素?”这个问题在朴素集合论是一个forbidden question。
作者这里就是提了一下,现阶段就把元素当作鸡鸭牛羊,点线面等乱七八糟的东西,反正都能往集合里面装。
可以通过列出集合中的所有元素来定义一个集合。
A
:
=
{
1
,
2
,
3
}
A := \{1,2,3\}
A:={1,2,3}按约定,集合中的元素如何列举,或者重复对于集合的定义而言都是无关紧要的。比如:
{
1
,
2
,
3
}
=
{
1
,
3
,
2
}
=
{
1
,
2
,
1
,
3
,
3
,
2
,
3
,
1
,
1
,
2
,
1
,
2
}
\{1,2,3\} = \{1,3,2\} = \{1,2,1,3,3,2,3,1,1,2,1,2\}
{1,2,3}={1,3,2}={1,2,1,3,3,2,3,1,1,2,1,2}采用列举元素的这种方式显得非常的冗长复杂,而且只适用于有限集合。对于无限集合,解决这种问题的方法是采用某种模式,比如偶数集合可以写成这样:
E
=
{
…
,
−
2
,
0
,
2
,
4
,
6
,
…
}
E = \{\dots,-2,0,2,4,6,\dots\}
E={…,−2,0,2,4,6,…}但是这种定义天生地带有歧义,容易误解。而且有些集合还“非常大”,根本无法列举,比如实数。
所以通常更好的做法是定义一个描述集合元素的表达式,这些元素属于某个更大的(并且是已知的)集合
S
S
S,满足某种性质
P
P
P。
A
=
{
s
∈
S
∣
s
satisfies
P
}
A = \{s\in S\mid s\ \textup{satisfies}\ P\}
A={s∈S∣s satisfies P}(
∈
\in
∈表示属于)这种方式是精确的且没有歧义。
我们偶尔会遇到集合记号的变体,叫做“multiset”。一个multiset是一个允许“多样性”元素的:比如 { 2 , 2 } \{2,2\} {2,2} 就和 { 2 } \{2\} {2}不同 。正确定义multiset的方法是通过 f u n c t i o n s functions functions。
一些常用的集合如下:
- ∅ {\empty} ∅:空集,不包含任何元素的集合;
- N \mathbb{N} N:自然数的集合(非负整数的集合);
- Z \mathbb{Z} Z:整数集合;
- Q \mathbb{Q} Q:有理数的集合;
- R \mathbb{R} R:实数集合;
- C \mathbb{C} C:复数集合。
s i n g l e t i o n singletion singletion用来表示只包含一个元素的集合。比如 { 1 } \{1\} {1}, { 2 } \{2\} {2}, { 3 } \{3\} {3}都是不同的集合,但是它们都是 s i n g l e t i o n s singletions singletions。
下面是一些有用的符号(称作“数量词;数量修饰语;量词”):
- ∃ \exist ∃ 表示“存在”(existential quantifier);
- ∀ \forall ∀ 表示“对于所有”(universal quantifier)。
比如偶数集合可以写成: E = { a ∈ Z ∣ ( ∃ n ∈ Z ) a = 2 n } E = \{a\in \mathbb{Z}\mid(\exist n \in \mathbb{Z})\ a = 2n\} E={a∈Z∣(∃n∈Z) a=2n}用语言描述就是“存在整数 n n n使得 a = 2 n a=2n a=2n的所有整数 a a a”。
另外要注意书写的顺序会有很大的影响。例如: ( ∀ a ∈ Z ) ( ∃ b ∈ Z ) b = 2 a (\forall a \in \mathbb{Z})(\exist b \in \mathbb{Z})\ b = 2a (∀a∈Z)(∃b∈Z) b=2a为真:它说的是任意整数乘以2会得到一个整数;但是 ( ∃ b ∈ Z ) ( ∀ a ∈ Z ) b = 2 a (\exist b \in \mathbb{Z})(\forall a \in \mathbb{Z})\ b = 2a (∃b∈Z)(∀a∈Z) b=2a是假的:它说的是存在某个整数 b b b对于任意的整数 a a a而言, b b b都是 a a a的两倍——这显然是假的。
注意如果只是简单的写出如下表达式: b = 2 a b=2a b=2a不足以表达出有用的信息,除非有上下文能将量词关联到 a a a和 b b b。
解读
集合是现代数学的根基,很多数学教材中都是从集合开始介绍的。作者在这一节中介绍了集合定义和表示。
- 集合中的所有元素就定义了这个集合
- 集合元素的无序性
- 元素之间不重复
- 比较两个集合是否相等就是看两个集合的元素是否是完全一样,这个在很多证明题中都会用到
单词
- immaterial: 不重要;无关紧要;无形体的;非物质的
- cumbersome: 大而笨重的;难以携带的;缓慢复杂的;冗长的;累赘的;复杂的
- inherently: 天性地,固有地
- quantifier: 数量词;数量修饰语;量词