Algebra:Chapter 0 - 群的定义

群的定义

1.1. Groups and groupoids.

Joke 1.1. 定义:一个群是具有单个对象的 g r o u p o i d groupoid groupoid

这实际上是一个完美的viable定义,由于之前已经在Example I.4.6中定义过了groupoids;但是大多数的数学家会发现用这个方式介绍群显得ludicrous,或者他们至少会礼貌地表达出这么做会造成pedagogical effectiveness的怀疑。为了redeem他自己,作者将会立即解析这个定义,为什么他会这么说。如果 ∗ * 是这个groupoid G \mathsf{G} G 中唯一的对象, H o m G ( ∗ , ∗ ) = A u t G ( ∗ ) \mathrm{Hom}_{\mathsf{G}}(*,*)=\mathrm{Aut}_{\mathsf{G}}(*) HomG(,)=AutG()(因为 G \mathsf{G} G是一个groupoid),并且这个集合包含了关于 G \mathsf{G} G的所有信息。将这个集合称为 G G G。那么(根据范畴的定义)在 G G G上有一个associate操作,有一个恒等态射 1 ∗ 1_{*} 1,以及(根据groupoid的定义,它说的是在 G \mathsf{G} G中的每个态射都是isomorphism)每个 g ∈ G g\in\mathsf{G} gG都有一个逆 g − 1 ∈ G g^{-1}\in G g1G

这就是群:一个集合 G G G,有满足一些关键公理的composition law,即结合性,恒等的存在,以及逆的存在。

1.2. Definition

现在,我们将会出正式的定义。令 G G G是一个非空的集合,它被赋予了一个二元操作( b i n a r y o p e r a t i o n binary operation binaryoperation),即一个“乘法(multiplication)”映射 ∙ : G × G → G \bullet:G\times G\rightarrow G :G×GG我们的记号将用 ∙ ( g , h ) ≕ g ∙ h \bullet(g,h)\eqqcolon g\bullet h (g,h)=:gh或者简单的写作 g h gh gh,如果操作的名字已经知道的话。细心的读者可能会发现了我们应该写成 h ∙ g h\bullet g hg,就像我们在范畴中那样,但是这个已经是约定俗称的了。

Definition 1.2 集合 G G G,然后被赋予了二元运算KaTeX parse error: Undefined control sequence: \bullte at position 1: \̲b̲u̲l̲l̲t̲e̲(简写成, ( G , ∙ ) (G,\bullet) (G,)),或者 G G G是一个群( g r o u p group group),如果

  1. 操作 ∙ \bullet 具有结合性(associative),即 ( ∀ g , h , k ∈ G ) : ( g ∙ h ) ∙ k = g ∙ ( h ∙ k ) (\forall g,h,k\in G):\quad(g\bullet h)\bullet k = g\bullet (h\bullet k) (g,h,kG):(gh)k=g(hk)
  2. 存在一个 i d e n t i t y   e l e m e n t   e G identity\ element\ e_{G} identity element eG对于 ∙ \bullet ,使得 ( ∃ e G ∈ G ) ( ∀ g ∈ G ) : g ∙ e G = g = e G ∙ g (\exist e_{G}\in G)(\forall g \in G):\quad g\bullet e_{G}=g=e_{G}\bullet g (eGG)(gG):geG=g=eGg
  3. G G G中的每个元素对于 ∙ \bullet 都有一个逆,即 ( ∀ g ∈ G ) ( ∃ h ∈ G ) : g ∙ h = e G = h ∙ g (\forall g \in G)(\exist h \in G):\quad g\bullet h = e_{G}=h\bullet g (gG)(hG):gh=eG=hg

Example 1.3. 由于我们明确要求 G G G为非空的,最简单的方法来构造(concoct)一个群就是令 G = { e } G=\{e\} G={e},为一个单集。这里仅有一个函数 G × G → G G\times G \rightarrow G G×GG,所以这里只有一个二元操作在 G G G上,通过如下式子定义的 e ∙ e = e e\bullet e= e ee=e

这个三个公理对于这个例子都满足,所以 { e } \{e\} {e}被装配了唯一的一个群结构。

这种群通常被称为平凡群(trivial group)。

Example 1.4. 读者应该仔细检验 ( Z , + ) , ( Q , + ) , ( R , + ) , ( C , + ) (\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+) (Z,+),(Q,+),(R,+),(C,+),以及其他的变种都是群的例子。虽然这些都是群,但是并没有真正揭示出群是什么,因为它们都太特殊了。例如,所有的这些例子还具有交换性(commutative)。

Example 1.5. 我的读者很可能熟悉极端重要的非交换例子,就是可逆的, n × n n\times n n×n的矩阵, n ≥ 2 n\geq 2 n2。总之要说的就是这个群并不是可逆的。可逆的 n × n n\times n n×n实数矩阵群记作 G L n ( R ) \mathrm{GL}_{n}(\mathbb{R}) GLn(R)

1.3. (群)基本性质

单词

  • invertible: 相反的;可逆的;被翻过来的;被颠倒的
  • real entries:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值