Algebra:Chapter0 - 3.1. Definition.

3.1. Definition.

范畴的定义一开始看上去有点复杂,但是它的要点可以很快归纳:范畴包括了一些对象的集合(collection)以及这些对象之间的态射(morphisms),同时满足一些条件。

读者会注意到我避免写“a set of objects”,而是用了更一般的collection。对象的collection因为包含太广,导致构不成一个集合(set)。但是也有办法处理它,只要用去个名字叫 c l a s s class class就行了。存在所有sets的class(同时也会有classes来处理groups和rings等)。

另一个定义的足够大的集合(被称作universe),满足从这个gigantic entity取出所有classes的所有objects。

不管怎么样,所有读者都应该直到有方法使它有效。我们将会在定义中使用术语“class”,这并不影响本书中的其他任何证明或者定义。

更多的是,在某些例子中在class之下考虑的是集合(我们说在这情况下category是small的),因此读者不会觉得有什么拘束。

定义 3.1. 一个范畴 C \mathsf{C} C包含了

  • 范畴中的对象的class O b j ( C ) \mathrm{Obj}(\mathsf{C}) Obj(C)
  • 对于 C \mathsf{C} C中的任意两个对象 A A A B B B,都包含一个态射(morphisms)的集合 H o m C ( A , B ) \mathrm{Hom}_{\mathsf{C}}(A,B) HomC(A,B),这个集合包含了若干属性。

定义很简单嘛!!!
希望我待会儿不要哭。

需要记在心中的一个prototype是,将这些对象当作一个集合,而态射看作函数。这样的类比可以将态射的定义变得自然,而且容易记忆:

  • 对于 C \mathsf{C} C中的每个对象,至少存在一个态射 1 A 1_{A} 1A ∈ H o m C ( A , A ) \in \mathrm{Hom}_{\mathsf{C}}(A, A) HomC(A,A),即在 A A A上的对等。
  • 可以对态射进行复合:两个态射 f ∈ H o m C ( A , B ) f\in \mathrm{Hom}_{\mathsf{C}}(A, B) fHomC(A,B) g ∈ H o m C ( B , C ) g\in \mathrm{Hom}_{\mathsf{C}}(B, C) gHomC(B,C)可以确定一个态射 g f ∈ H o m C ( A , C ) gf\in \mathrm{Hom}_{\mathsf{C}}(A, C) gfHomC(A,C)。就是说,对任意 C \mathsf{C} C中的三个对象 A , B , C A,B,C A,B,C,都存在一个函数 H o m C ( A , B ) × H o m C ( B , C ) → H o m C ( A , C ) \mathrm{Hom}_{\mathsf{C}}(A, B) \times \mathrm{Hom}_{\mathsf{C}}(B, C)\rightarrow \mathrm{Hom}_{\mathsf{C}}(A, C) HomC(A,B)×HomC(B,C)HomC(A,C) ( f , g ) (f,g) (f,g)的有序对记作 g f gf gf
  • 复合具有结合性(associative):如果 f ∈ H o m C ( A , B ) f\in \mathrm{Hom}_{\mathsf{C}}(A, B) fHomC(A,B) g ∈ H o m C ( B , C ) g\in \mathrm{Hom}_{\mathsf{C}}(B, C) gHomC(B,C) h ∈ H o m C ( C , D ) h\in \mathrm{Hom}_{\mathsf{C}}(C, D) hHomC(C,D),那么有 ( h g ) f = h ( g f ) (hg)f=h(gf) (hg)f=h(gf)
  • 对等态射复合后还是对等的:对于所有的 f ∈ H o m C ( A , B ) f\in \mathrm{Hom}_{\mathsf{C}}(A, B) fHomC(A,B)都有 f 1 A = f , 1 B f = f f1_{A}=f,\quad1_{B}f = f f1A=f,1Bf=f
    这确实有点拗口,但是只要对比集合间的函数就可以理解了。还有我们要求 H o m C ( A , B ) , H o m C ( C , D ) \mathrm{Hom}_{\mathsf{C}}(A, B),\quad \mathrm{Hom}_{\mathsf{C}}(C, D) HomC(A,B),HomC(C,D)是不相交的(disjoint),除非 A = C , B = D A=C,B=D A=C,B=D;这和你平常想的不太一样,但是这对于普通的集合-函数也适用。它说的是,如果两个函数是同一个而且相同,那么它们必须要有相同的source和相同的target:source和target都是集合-函数数据的一部分。

在范畴 C \mathsf{C} C中的对象 A A A到自身的态射(morphism)称为 e n d o m o r p h i s m endomorphism endomorphism H o m C ( A , A ) \mathrm{Hom}_{\mathsf{C}}(A, A) HomC(A,A)记作 E n d C ( A ) \mathrm{End}_{\mathsf{C}}(A) EndC(A)。在范畴公理告诉我们这是一个“pointed”集合,因为 1 A ∈ E n d C ( A ) 1_{A}\in \mathrm{End}_{\mathsf{C}}(A) 1AEndC(A)中。读者应该注意复合定义了 E n d C ( A ) \mathrm{End}_{\mathsf{C}}(A) EndC(A)上的一个操作:如果 f , g f,g f,g E n d C ( A ) \mathrm{End}_{\mathsf{C}}(A) EndC(A)中的元素,那么它们的复合 g f gf gf也是。

如果一直写“ f ∈ H o m C ( A , B ) f \in \mathrm{Hom}_{\mathsf{C}}(A,B) fHomC(A,B)”会变得很枯燥。如果范畴在上下文中是已知的,那么我们可以将下标 C \mathsf{C} C给去掉,或者就用箭头表示就像在集合-函数中的那样: f : A → B f:A\rightarrow B f:AB。这让我们可以描绘任意一个范畴中的态射图像;如果一个图所有遍历它的方法都得到同样的结果,那么这个图是“commute”(commutative)的。

commute这个概念有点懵逼,没看到是可交换的呀

单词

  • gist: 要点;主旨;大意
  • morphisms: 态射;形态主义
  • refrained from: 克制; 节制; 避免;
  • mouthful: 一口,一满口(的量);又长又拗口的词(或短语)
  • commutative: 交换的(排列次序不影响结果)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值