Algebra:Chapter 0 - 集合的包含

集合的包含

正如我们所提到的,两个集合是相等的当且仅当它们包含相同的元素。我们说一个集合 S S S是一个集合 T T T的子集如果集合 S S S的每个元素都是集合 T T T中的一个元素,用符号表示为: S ⊆ T S \subseteq T ST按照惯例, S ⊂ T S \subset T ST表示这样一件事:不像 < < < vs. ≤ \leq ,它并不排除 S S S T T T相等的可能性。为了避免混淆,我们将会在本书中一致使用 ⊆ \subseteq 。用 S ⊊ T S\subsetneq T ST表示 S S S真包含于 T T T:也就是 S ⊆ T S \subseteq T ST并且 S ≠ T S \neq T S=T

我们可以从如下逻辑来考虑“集合的包含关系”: S ⊆ T S \subseteq T ST意味着 s ∈ S ⟹ s ∈ T s \in S \Longrightarrow s \in T sSsT也就是说,“如果 s s s是集合 S S S中的一个元素,那么 s s s是集合 T T T中的一个元素”;还有就是, S S S中所有的元素都是 T T T的元素。

注意,对于所有的集合 S S S ∅ ⊆ S \empty \subseteq S S并且 S ⊆ S S \subseteq S SS

如果 S ⊆ T S \subseteq T ST并且 T ⊆ S T \subseteq S TS,那么 S = T S=T S=T

这个在证明集合相等时用的很多

符号 ∣ S ∣ |S| S表示集合 S S S中的元素个数,如果集合内元素的个数是无限个,那么就写成 ∣ S ∣ = ∞ |S|=\infty S=。如果 S S S T T T都是有限集合,那么 S ⊆ T ⟹ ∣ S ∣ ≤ ∣ T ∣ S \subseteq T \Longrightarrow |S| \leq |T| STST集合 S S S的所有子集也构成了一个集合,叫做幂集( p o w e r s e t power set powerset)。例如, ∅ \empty 的幂集只包含了一个元素,就是 { ∅ } \{\empty\} {}。集合 S S S的幂集记作 P ( S ) \mathscr{P}(S) P(S);另一种流行的记法是 2 S 2^S 2S,并且 ∣ P ( S ) ∣ = 2 ∣ S ∣ |\mathscr{P}(S)|=2^{|S|} P(S)=2S如果 S S S是有限集合的话。

解读

这一节的要点有:

  • 子集的定义
  • 无限集合和有限集合
  • 幂集

如果只定义集合,集合之间就只有基本的操作。一旦定义了子集这种包含关系,内涵就比较丰富了,可以用来描述很多场景。

单词

  • alternative: 可供替代的;非传统的;另类的
  • promise: 许诺;承诺;答应;保证;使很可能;预示
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值